Vol. 60
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-05-29
Genetic Algorithm Optimization for Microstrip Patch Antenna Miniaturization
By
Progress In Electromagnetics Research Letters, Vol. 60, 113-120, 2016
Abstract
The miniaturization of the patch antenna has become an important issue in reducing the volume of entire communication system. This paper presents an improved method of size reduction of a microstrip antenna using the genetic algorithm. The shape of a typical rectangular patch is modified in order to reduce it resonance frequency keeping the physical volume of the antenna constant. Indeed, the initial patch is divided into 10 × 10 small uniform rectangles (Pixel), and the genetic algorithm searches, the optimal configuration for the desired goal. The resonance frequency of a micro-strip patch is shifted from 4.9 GHz to 2.16 GHz and a rate of miniaturization is up to 82%. To validate the procedure, an antenna prototype has been fabricated and tested with an FR4 substrate. The measurements results were in good agreement with simulation ones.
Citation
Mohammed Lamsalli, Abdelouahab El Hamichi, Mohamed Boussouis, Naima Amar Touhami, and Tajeddin Elhamadi, "Genetic Algorithm Optimization for Microstrip Patch Antenna Miniaturization," Progress In Electromagnetics Research Letters, Vol. 60, 113-120, 2016.
doi:10.2528/PIERL16041907
References

1. Lo, T. K. and Y. Hwang, "Microstrip antennas of very high permittivity for personal communications," Asia Pacific Microwave Conference, Vol. 1, 253-256, 1997.        Google Scholar

2. Elftouh, H., N. A. Touhami, and M. Aghoutane, "Miniaturized microstrip patch antenna with spiral defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 53, 77-44, 2015.
doi:10.2528/PIERL15031003        Google Scholar

3. Elftouh, H., N. A. Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.
doi:10.2528/PIERC14092302        Google Scholar

4. Lee, K. C. and J.-Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2001-2012, 2012.
doi:10.1163/156939306779322747        Google Scholar

5. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 53, No. 6, 1939-1945, 2005.
doi:10.1109/TAP.2005.848461        Google Scholar

6. Herscovici, N., M. F. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas Wirel. Propag. Lett., Vol. 1, No. 1, 94-97, 2002.
doi:10.1109/LAWP.2002.805128        Google Scholar

7. Jayasinghe, J. W. and D. N. Uduwawala, "A novel miniature multi-frequency broadband patch antenna for WLAN applications," 8th IEEE Int. Conf. Ind. Inf. Syst., 361-363, Peradeniya, December 2013.        Google Scholar

8. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering elecromagnetics," IEEE Trans. Antennas Propag., Vol. 39, No. 10, 7-21, 1997.
doi:10.1109/74.632992        Google Scholar

9. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 343-353, 1997.
doi:10.1109/8.558650        Google Scholar

10. Jayasinghe, J. M. J. W. and D. N. Uduwawala, "A broadband triple-frequency patch antenna for WLAN applications using genetic algorithm optimization," 7th IEEE Int. Conf. Ind. Inf. Syst. (ICIIS), 1-4, Chennai, August 1986.        Google Scholar

11. Jayasinghe, J. M. J. W., J. Anguera, and D. N. Uduwawala, "Genetic algorithm optimization of a high-directivity microstrip patch antenna having a rectangular profile," Radioengineering, Vol. 22, No. 3, 1-4, 2012.        Google Scholar

12. Haupt, R. L. and S. E. Haupt, Practical Genetic Algorithms, John Wiley, 2004.

13. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas," IEEE Trans. Antennas Propag., Vol. 47, No. 10, 1606-1614, 1999.
doi:10.1109/8.805906        Google Scholar

14. Jayasinghe, J., J. Anguera, and D. Uduwawala, "On the behavior of several fitness functions for genetically optimized microstrip antennas," Int. J. Sci. World, Vol. 3, No. 1, 53-58, 1999.
doi:10.14419/ijsw.v3i1.4132        Google Scholar

15. Su, D. Y., D. M. Fu, and D. Yu, "Genetic algorithms and method of moments moments for the design of pifas," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603        Google Scholar

16. Jayasinghe, J. W., J. Anguera, and D. N. Uduwawala, "A high-directivity microstrip patch antenna design by using genetic algorithm optimization," Progress In Electromagnetics Research C, Vol. 37, 131-144, 1986.        Google Scholar

17. John, M. and M. J. Ammann, "Wideband printed monopole design using genetic algorithm," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 447-449, 2007.
doi:10.1109/LAWP.2007.891962        Google Scholar