1. Collin, R., Field Theory of Guided Waves, McGraw-Hill, 1960.
2. Gauthier, G., A. Courtay, and G. Rebeiz, "Microstrip antennas on synthesized low dielectric-constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 8, 1310-1314, 1997.
doi:10.1109/8.611252 Google Scholar
3. Colburn, J. and Y. Rahmat-Samii, "Patch antennas on externally perforated high dielectric constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 12, 1785-1794, 1999.
doi:10.1109/8.817654 Google Scholar
4. Kokotoff, D., R. Waterhouse, C. Birtcher, and J. Aberle, "Annular ring coupled circular patch with enhanced performance," Electron. Lett., Vol. 33, No. 24, 2000, 1997.
doi:10.1049/el:19971411 Google Scholar
5. Rojas, R. and K. Lee, "Surface wave control using nonperiodic parasitic strips in printed antennas," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 148, No. 1, 25, 2001.
doi:10.1049/ip-map:20010222 Google Scholar
6. Bhattacharyya, A., "Characteristics of space and surface waves in a multilayered structure (microstrip antennas)," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 8, 1231-1240, 1990.
doi:10.1109/8.56959 Google Scholar
7. Jackson, D., J. Williams, A. Bhattacharyya, R. Smith, S. Buchheit, and S. Long, "Microstrip patch designs that do not excite surface waves," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 8, 1026-1037, 1993.
doi:10.1109/8.244643 Google Scholar
8. Khayat, M., J. Williams, D. Jackson, and S. Long, "Mutual coupling between reduced surface-wave microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 10, 1581-1593, 2000.
doi:10.1109/8.899675 Google Scholar
9. Pendry, J., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 4166-4169, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
10. Weng, Z., N. Wang, Y. Jiao, and F. Zhang, "A directive patch antenna with metamaterial structure," Microwave and Optical Technology Letters, Vol. 49, No. 2, 456-459, 2006.
doi:10.1002/mop.22146 Google Scholar
11. Liu, Y. and X. Zhao, "Enhanced patch antenna performances using dendritic structure metamaterials," Microwave and Optical Technology Letters, Vol. 51, No. 7, 1732-1740, 2009.
doi:10.1002/mop.24450 Google Scholar
12. Smith, D., W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
13. Smith, D. and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett., Vol. 85, No. 14, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933 Google Scholar
14. Shelby, R., "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
15. Grbic, A. and G. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2604-2611, 2003.
doi:10.1109/TAP.2003.817543 Google Scholar
16. Chen, L., S. He, and L. Shen, "Finite-size effects of a left-handed material slab on the image quality," Phys. Rev. Lett., Vol. 92, No. 10, 2004. Google Scholar
17. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
18. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna's gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301 Google Scholar
19. Alici, K., F. Bilotti, L. Vegni, and E. Ozbay, "Optimization and tunability of deep subwavelength resonators for metamaterial applications: Complete enhanced transmission through a subwavelength aperture," Opt. Express, Vol. 17, No. 8, 5933, 2009.
doi:10.1364/OE.17.005933 Google Scholar
20. Alici, K. and E. Ozbay, "Characterization and tilted response of a fishnet metamaterial operating at 100 GHz," Journal of Physics D: Applied Physics, Vol. 41, No. 13, 135011, 2008.
doi:10.1088/0022-3727/41/13/135011 Google Scholar
21. Gil, M., J. Bonache, J. Selga, J. Garcia-Garcia, and F. Martin, "High-pass filters implemented by composite right/left handed (CRLH) transmission lines based on complementary split rings resonators (CSRRs)," PIERS Online, Vol. 3, No. 3, 251-253, 2007.
doi:10.2529/PIERS060802072849 Google Scholar
22. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 135-146, 2006.
doi:10.1109/TMTT.2005.860329 Google Scholar
23. Alici, K. and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys., Vol. 101, No. 8, 083104, 2007.
doi:10.1063/1.2722232 Google Scholar
24. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 13-25, 2007.
doi:10.1109/TAP.2006.888401 Google Scholar
25. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201 Google Scholar
26. Lee, Y., J. Yeo, K. Ko, R. Mittra, Y. Lee, and W. Park, "A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement," Microwave and Optical Technology Letters, Vol. 42, No. 1, 25-31, 2004.
doi:10.1002/mop.20196 Google Scholar
27. Erentok, A., P. Luljak, and R. Ziolkowski, "Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 160-172, 2005.
doi:10.1109/TAP.2004.840534 Google Scholar
28. Burokur, S., M. Latrach, and S. Toutain, "Theoretical investigation of a circular patch antenna in the presence of a left-handed medium," Antennas and Wireless Propagation Letters, Vol. 4, No. 1, 183-186, 2005.
doi:10.1109/LAWP.2005.850797 Google Scholar
29. Li, B., B. Wu, and C. H. Liang, "Study on high gain circular waveguide array antenna with metamaterial structure," Progress In Electromagnetics Research, Vol. 60, 207-219, 2006.
doi:10.2528/PIER05121101 Google Scholar
30. Burghignoli, P., G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Directive leaky-wave radiation from a dipole source in a wire-medium slab," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1329-1339, 2008.
doi:10.1109/TAP.2008.922620 Google Scholar
31. El-Nawawy, M., A. A. Allam, and A. Korzec, "The design of a 0.35 THz microstrip patch antenna on LTCC substrate," Electrical and Electronic Engineering, Vol. 1, No. 1, 1-4, 2011.
doi:10.5923/j.eee.20110101.01 Google Scholar
32. Turpin, J., J. Bossard, K. Morgan, D. Werner, and P. Werner, "Reconfigurable and tunable metamaterials: A review of the theory and applications," International Journal of Antennas and Propagation, Vol. 2014, 1-18, 2014.
doi:10.1155/2014/429837 Google Scholar
33. Vendik, I., O. Vendik, M. Odit, D. Kholodnyak, S. Zubko, M. Sitnikova, P. Turalchuk, K. Zemlyakov, I. Munina, D. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, "Tunable metamaterials for controlling THz radiation," IEEE Transactions on Terahertz Science and Technology, Vol. 2, No. 5, 540-549, 2012.
doi:10.1109/TTHZ.2012.2209878 Google Scholar
34. Ziolkowski, R. W., "Metamaterial-based antennas: Research and developments," IEICE Transactions on Electronics, Vol. 89, No. 8, 1267-1275, 2006.
doi:10.1093/ietele/e89-c.9.1267 Google Scholar
35. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902 Google Scholar
36. Xu, H., Z. Zhao, Y. Lv, C. Du, and X. Luo, "Metamaterial superstrate and electromagnetic band-gap substrate for high directive antenna," Int. J. Infrared Milli. Waves, Vol. 29, 493-498, 2008.
doi:10.1007/s10762-008-9344-y Google Scholar
37. Ju, J., D. kim, W. J. Lee, and J. I. Choi, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microwave and Optical Tech. Lett., Vol. 51, No. 8, 1973-1976, 2009.
doi:10.1002/mop.24469 Google Scholar
38. Temelkuaran, B., M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K. M. Ho, "Photonic crystal-based resonant antenna with a very high directivity," Journal of Applied Physics, Vol. 87, 603-605, 2000.
doi:10.1063/1.371905 Google Scholar
39. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1632-1643, Jun. 2006.
doi:10.1109/TAP.2006.875470 Google Scholar
40. Tang, M., S. Xiao, D.Wang, J. Xiong, K. Chen, and B. Wang, "Negative index of reflection in planar metamaterial composed of single split-ring resonators," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 26, No. 3, 250-258, Mar. 2011. Google Scholar
41. Woodley, J., M. Wheeler, and M. Mojahedi, "Left-handed and right-handed metamaterials composed of split ring resonators and strip wires," Physical Review E, Vol. 71, No. 6, 2005.
doi:10.1103/PhysRevE.71.066605 Google Scholar
42. Kamtongdee, C. and N. Wongkasem, "A novel design of compact 2.4 GHz microstrip antennas," IEEE 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009, ECTI-CON 2009, Vol. 2, 766-769, May 2009.
doi:10.1109/ECTICON.2009.5137159 Google Scholar
43. Bancroft, R., Microstrip and printed antenna design, The Institution of Engineering and Technology, 2009.
44. Pues, H. and A. V Capelle, "Accurate transmission-line model for the rectangular microstrip antenna," Proc. IEEE, Vol. 131, No. 6, 334-340, Dec. 1984. Google Scholar
45. Chen, X., T. Grzegorczyk, B. Wu, J. Pacheco, and J. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 2004. Google Scholar
46. Arslanagic, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, 2013.
doi:10.1109/MAP.2013.6529320 Google Scholar
47. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time- domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
48. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/22.552032 Google Scholar
49. Campione, S., S. Steshenko, M. Albani, and F. Capolino, "Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres," Optics Express, Vol. 19, No. 27, 26027-26043, 2011.
doi:10.1364/OE.19.026027 Google Scholar
50. Hu, J., C. S. Yan, and Q. C. Lin, "A new patch antenna with metamaterial cover," Journal of Zhejiang University SCIENCE A, Vol. 7, No. 1, 89-94, 2006.
doi:10.1631/jzus.2006.A0089 Google Scholar
51. Kurzweil-Segev, Y., M. Brodsky, A. Polsman, E. Safrai, Y. Feldman, S. Einav, and P. Ben Ishai, "Remote monitoring of phasic heart rate changes from the palm," IEEE Transactions on Terahertz Science and Technology, Vol. 4, No. 5, 618-623, 2014.
doi:10.1109/TTHZ.2014.2330196 Google Scholar
52. Sun, M., Z. N. Chen, H. Tanoto, Q. Y. Wu, J. H. Teng, and S. B. Yeap, "Design of continuous- wave photomixer driven terahertz dipole lens antennas," APSIPA Annual Summit and Conference, 14-17, Dec. 2010. Google Scholar