1. Austin, A. C. M. and C. D. Sarris, "Efficient analysis of geometrical uncertainty in the fdtd method using polynomial chaos with application to microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4293-4301, Dec. 2013.
doi:10.1109/TMTT.2013.2281777 Google Scholar
2. Cameron, R. H. and W. T. Martin, "The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals," Annals of Mathematics, Vol. 48, No. 2, 385-392, 1947.
doi:10.2307/1969178 Google Scholar
3. Chauvire, C., J. S. Hesthaven, and L. Lurati, "Computational modeling of uncertainty in time-domain electromagnetics," SIAM Journal on Scientific Computing, Vol. 28, No. 2, 751-775, 2006.
doi:10.1137/040621673 Google Scholar
4. Chen, M.-H., Q.-M. Shao, and J. G. Ibrahim, Monte Carlo Methods in Bayesian Computation, Springer, 2000.
doi:10.1007/978-1-4612-1276-8
5. Claerbout, J. F., Imagining the Earth’s Interior, Blackwell Scientific Pub., 1985.
6. Crank, J. and P. Nicolson, "A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type," Proc. Camb. Phil. Soc., Vol. 43, 50-67, 1947.
doi:10.1017/S0305004100023197 Google Scholar
7. Fock, V. A., Electromagnetic Diffraction and Propagation Problems, Pergamon Press, 1965.
8. Holm, P., "Wide-angle shift-map PE for a piecewise linear terrain finite-difference approach," IEEE Transactions on Antennas and Propagation, Vol. 55, 2773-2789, 2007.
doi:10.1109/TAP.2007.905865 Google Scholar
9. Jin, J. M., Theory and Computation of Electromagnetic Fields, Wiley, 2011.
10. Leontovich, M. A. and V. A. Fock, "Solution of propagation of electromagnetic waves along earth’s surface by the method of parabolic equations," J. Physics, USSR, Vol. 10, 13-23, 1946. Google Scholar
11. Levy, M., "Parabolic equation methods for electromagnetic wave propagation," IET, 2000. Google Scholar
12. Norton, K. A., "The propagation of radio waves over the surface of the earth and in the upper atmosphere," Proceedings of the Institute of Radio Engineers, Vol. 25, 1203-1236, 1937. Google Scholar
13. Robert, C. P. and G. Casella, Monte Carlo Statistical Methods (Springer Texts in Statistics), Springer-Verlag New York, Inc., 2005.
14. Smith, R. C., "Uncertainty quantification: Theory, implementation, and applications," Computational Science and Engineering, 2013. Google Scholar
15. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Jun. 2005.
16. Tapper, F. D., "The parabolic approximation method," Wave Propagation and Underwater Acoustics, Vol. 70, 224-287, 1977.
doi:10.1007/3-540-08527-0_5 Google Scholar
17. Wan, X. and G. E. Karniadakis, "An adaptive multi-element generalized polynomial chaos method for stochastic differential equations," Journal of Computational Physics, Vol. 209, No. 2, 617-642, 2005.
doi:10.1016/j.jcp.2005.03.023 Google Scholar
18. Wiener, N., "The homogeneous chaos," American Journal of Mathematics, Vol. 60, No. 4, 897-936, 1938.
doi:10.2307/2371268 Google Scholar