Vol. 50
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-23
Segment Noncoherent Integration Based Inverse Synthetic Aperture Radar Imaging Under Low Signal-to-Noise Ratio
By
Progress In Electromagnetics Research M, Vol. 50, 105-115, 2016
Abstract
In this paper, a novel scheme for inverse synthetic aperture radar (ISAR) imaging under low signal-to-noise ratio (SNR) condition is proposed. The method is a preprocess of the high-resolution range profiles and relies on the oversampling in the azimuth direction. It divides the entire coherent processing interval into segments according to the down sampling factor. In each segment, original low SNR echoes are noncoherently integrated to obtain a new high SNR echo. With the new high SNR echoes, conventional methods for ISAR imaging can perform much better and obtain a better focused ISAR image. The presented algorithm has the advantage of effectiveness under low SNR condition and computational efficiency. Experimental results based on both the simulated and real radar data of an airplane verify the superiority of the proposed strategy.
Citation
Jianzhi Lin, Yue Zhang, Weixing Li, and Zeng Ping Chen, "Segment Noncoherent Integration Based Inverse Synthetic Aperture Radar Imaging Under Low Signal-to-Noise Ratio," Progress In Electromagnetics Research M, Vol. 50, 105-115, 2016.
doi:10.2528/PIERM16062305
References

1. Chen, C. C. and H. C. Andrews, "Target-motion-induced radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, No. 1, 2-14, 1980.
doi:10.1109/TAES.1980.308873

2. Delise, G. Y. and H. Wu, "Moving target imaging and trajectory computation using ISAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 3, 887-889, 1994.
doi:10.1109/7.303757

3. Wang, J. and D. Kasilingam, "Global range alignment for ISAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 1, 351-357, 2003.
doi:10.1109/TAES.2003.1188917

4. Wang, J. and X. Liu, "Improved global range alignment for ISAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, 1070-1075, 2007.
doi:10.1109/TAES.2007.4383594

5. Zhu, D., L. Wang, Y. Yu, Q. Tao, and Z. Zhu, "Robust ISAR range alignment via minimizing the entropy of the average range profile," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 2, 204-208, 2009.
doi:10.1109/LGRS.2008.2010562

6. Itoh, T. M. and G. W. Donohoe, "Motion compensation for ISAR via centroid tracking," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 7, 1191-1197, 1996.
doi:10.1109/7.532283

7. Ye, W., T. S. Yeo, and Z. Bao, "Weighted least-squares estimation of phase errors for SAR/ISAR autofocus," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 9, 2487-2494, 1999.
doi:10.1109/36.789644

8. Eichel, P. H. and C. V. Jakowatz, "Phase-gradient algorithm as an optimal estimator of the phase derivative," Optics Letters, Vol. 14, No. 20, 1101-1103, 1989.
doi:10.1364/OL.14.001101

9. Huang, D. R., L. Zhang, M. D. Xing, and Z. Bao, "ISAR autofocus method for maneuvering targets," Journal of Xidian University, Vol. 41, No. 3, 71-78, 2014.

10. Li, X., G. Liu, and J. Ni, "Autofocusing of ISAR imaging based on entropy minimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 4, 1240-1251, 1999.
doi:10.1109/7.805442

11. Martorella, M., F. Berizzi, and B. Haywood, "Contrast maximization based technique for 2-D ISAR autofocusing," IEE Proceedings on Radar, Sonar and Navigation, Vol. 52, No. 4, 253-262, 2005.
doi:10.1049/ip-rsn:20045123

12. Martorella, M., F. Berizzi, and S. Bruscoli, "Use of genetic algorithms for contrast and entropy optimization in ISAR autofocusing," EURASIP Journal on Applied Signal Processing, Vol. 2006, No. 87298, 1-11, 2006.

13. Yang, L., T. Xiong, L. Zhang, and M. D. Xing, "Translational motion compensation for ISAR imaging based on joint autofocusing under the low SNR," Journal of Xidian University, Vol. 39, No. 3, 63-71, 2012.

14. Zhang, L., J. L. Sheng, J. Duan, M. D. Xing, Z. J. Qiao, and Z. Bao, "Translational motion compensation for ISAR imaging under low SNR by minimum entropy," EURASIP Journal on Advances in Signal Processing, Vol. 2013, No. 33, 1-19, 2013.

15. Liu, L., F. Zhou, M. L. Tao, P. G. Sun, and Z. J. Zhang, "Adaptive translational motion compensation method for ISAR imaging under low SNR based on particle swarm optimization," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 11, 5146-5157, 2015.
doi:10.1109/JSTARS.2015.2491307

16. Zhang, S. H., Y. X. Liu, and X. Li, "Pseudomatched-filter-based ISAR imaging under low SNR condition," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 7, 1240-1244, 2014.
doi:10.1109/LGRS.2013.2290541