Vol. 52
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-16
Large Linear Random Symmetric Arrays
By
Progress In Electromagnetics Research M, Vol. 52, 67-77, 2016
Abstract
In this work linear random arrays are studied. It is shown that random symmetric linear arrays can be more easily characterised (with respect to the asymmetric ones) in terms of the first and second order statistics of the array factor magnitude. In particular, the non-stationarity of the array factor can be taken into account while studying the array response. Accordingly, this leads to more accurate predictions as far as the side-lobe level is concerned.
Citation
Giovanni Buonanno, and Raffaele Solimene, "Large Linear Random Symmetric Arrays," Progress In Electromagnetics Research M, Vol. 52, 67-77, 2016.
doi:10.2528/PIERM16062706
References

1. King, D. D., R. F. Packard, and R. K. Thomas, "Unequally-spaced, broad-band antenna arrays," IRE Transactions on Antennas and Propagation, Vol. 8, 380-384, July 1960.
doi:10.1109/TAP.1960.1144876

2. Maffett, A. L., "Array factors with non uniform spacing parameters," IRE Transactions on Antennas and Propagation, Vol. 10, 131-146, 1962.
doi:10.1109/TAP.1962.1137831

3. Lo, Y. T., "A mathematical theory of antenna arrays with randomly spaced elements," IEEE Trans. Antennas and Propagation, Vol. 12, 257-268, 1964.
doi:10.1109/TAP.1964.1138220

4. Lo, Y. T., "A probabilistic approach to the problem of large antenna arrays," Radio Sci., Vol. 68D, 1011-1019, September 1964.

5. Lo, Y. T., "High resolution antenna arrays with randomly spaced elements," 1963 PTAG Symp., 1963.

6. Agrawal, V. and Y. Lo, "Distribution of sidelobe level in random arrays," Proc. IEEE, Vol. 57, No. 10, 1764-1765, 1969.
doi:10.1109/PROC.1969.7392

7. Agrawal, V. D. and Y. T. Lo, "Mutual coupling in the phased arrays of randomly spaced antennas," IEEE Trans. Antennas and Propagation, Vol. 20, 288-295, May 1972.
doi:10.1109/TAP.1972.1140188

8. Krishnamurthy, S., D. W. Bliss, and V. Tarokh, "Sidelobe level distribution computation for antenna arrays with arbitrary element distributions," 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2045-2050, 2011.
doi:10.1109/ACSSC.2011.6190386

9. Krishnamurthy, S., D. W. Bliss, C. Richmond, and V. Tarokh, "Peak sidelobe level gumbel distribution for arrays of randomly placed antennas," 2015 IEEE Radar Conference (RadarCon), 1671-1676, 2015.
doi:10.1109/RADAR.2015.7131267

10. Lo, Y. T., "Aperiod arrays," Antenna Handbook, Y. T. Lo, S. W. Lee, Vol. 2, Antenna Theory, Chapter 14, Chapman and Hall, 1993.

11. Braun, R. and W. van Cappellen, "Aperture Arrays for the SKA: Dense or Sparse?," SKA Memo 87, 2006.

12. Shishkov, B., N. Shinohara, K. Hashimoto, and H. Matsumoto, "On the optimization of sidelobes in large antenna arrays for microwave power transmission," IEICE Technical Report, Vol. SPS 2006-11, 5-11, October 2006.

13. Bilinskis, I. and M. A. Lagunas, "Randomizing of array element spacing and of processing array signals," The Sixth European Signal Processing Conference, Brussels, August 25-28, 1992.

14. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., John Wiley and Sons, Inc., New York, 1996.

15. DonVito, M. B. and S. A. Kassam, "Characterization of the random array peak sidelobe," IEEE Trans. Antennas and Propagation, Vol. 27, 379-385, May 1979.
doi:10.1109/TAP.1979.1142097

16. Couch, L. W., Digital and Analog Communication Systems, 6th Ed., Prentice Hall, 2001.

17. Rice, S. O., "The mathematical analysis of random noise," Bell System Tech. J., Vol. 23, 282-332, 1944; Vol. 24, 46-156, 1945.
doi:10.1002/j.1538-7305.1944.tb00874.x

18. Steinberg, B. D., "The peak sidelobe of the phased array having randomly located elements," IEEE Trans. Antennas and Propagation, Vol. 20, 129-136, 1972.
doi:10.1109/TAP.1972.1140162

19. Papoulis, A. and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4th Ed., McGraw Hill, 2002.