Vol. 50
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-14
Performance Evaluation of Micro Rain Radar Over Sumatra through Comparison with Disdrometer and Wind Profiler
By
Progress In Electromagnetics Research M, Vol. 50, 33-46, 2016
Abstract
Micro Rain Radar (MRR) is a vertical pointing microwave profiler to measure hydrometeors and related parameters in high resolution. However, it is known that the MRR suffers from certain limitations due to several factors. This paper evaluates the performance of the MRR installed at Kototabang, west Sumatra, Indonesia (0.20˚S, 100.32˚E, 864 m above sea level). The DSD and rainfall rate from the MRR standard processing method had been evaluated by using collocated measurements of MRR, Parsivel disdrometer and Optical Rain Gauge (ORG) during 2014. Furthermore, 1.3 GHz wind profiler (BLR) observation was used to examine the vertical profiles of radar reflectivity and Doppler velocity. It was found that there were noticeable differences between the MRR and Parsivel in the small and large size ends of the DSD. At small sized drop (< 1 mm), the DSD spectra of MRR was higher than that obtained by the Parsivel otherwise it was smaller for large sized drop (> 2 mm). Underestimation of large sized drops in the MRR could be responsible for the underestimation of surface rainfall rate and daily rainfall. The source of differences in the DSD seems the measurement shortcomings such as attenuation correction and vertical wind effects, particularly during heavy rain. The shortcomings were observed from the comparison of mean Doppler velocity profiles between the MRR and the BLR. While the melting layer height of the two instruments was the same, the mean Doppler velocities of MRR shown downward increasing (DI) pattern through all rainfall intensities. On the other hand, for the BLR, the DI was only observed for heavy rain (> 10 mm/h), while downward decreasing was observed for light rain (< 5 mm/h). Similar pattern was also observed for the vertical profile of radar reflectivity. Thus, some corrections are needed for heavy rain, nevertheless, the MRR installed at Kototabang can be utilized for light rain. Comparisons indicated that the mean Doppler velocity and the DSD for the light rain as well as Z-R relation were in reasonable agreement with the reference of BLR, Parsivel and previous studies using the MRR.
Citation
Marzuki Marzuki, Hiroyuki Hashiguchi, Toyoshi Shimomai, Indah Rahayu, Mutya Vonnisa, and Afdal, "Performance Evaluation of Micro Rain Radar Over Sumatra through Comparison with Disdrometer and Wind Profiler," Progress In Electromagnetics Research M, Vol. 50, 33-46, 2016.
doi:10.2528/PIERM16072808
References

1. Marzuki, T. Kozu, T. Shimomai, W. L. Randeu, H. Hashiguchi, and Y. Shibagaki, "Diurnal variation of rain attenuation obtained from measurement of raindrop size distribution in equatorial Indonesia," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1191-1196, 2009.
doi:10.1109/TAP.2009.2015812        Google Scholar

2. Abdulrahman, A. Y., T. A. Rahman, S. K. B. A. Rahim, and M. Rafi Ul Islam, "A new rain attenuation conversion technique for tropical regions," Progress In Electromagnetics Research B, Vol. 26, 53-67, 2010.
doi:10.2528/PIERB10062105        Google Scholar

3. Das, S., A. Maitra, and A. K. Shukla, "Rain attenuation modeling in the 10-100 GHz frequency using drop size distributions for different climatic zones in tropical India," Progress In Electromagnetics Research B, Vol. 25, 211-224, 2010, doi:10.2528/PIERB10072707.
doi:10.2528/PIERB10072707        Google Scholar

4. Afullo, T. J. O., "Raindrop size distribution modeling for radio ink design along the eastern coast of South Africa," Progress In Electromagnetic Research B, Vol. 34, 345-366, 2011.
doi:10.2528/PIERB11082005        Google Scholar

5. Owolawi, P. A., "Raindrop size distribution model for the prediction of rain attenuation in Durban," PIERS Online, Vol. 7, No. 6, 516-523, 2011.        Google Scholar

6. Tokay, A., P. Hartmann, A. Battaglia, K. S. Gage, W. L. Clark, and C. R. Williams, "A field study of reflectivity and Z-R relations using vertically pointing radars and disdrometers," J. Atmos. Oceanic Technol., Vol. 26, No. 6, 1120-1134, 2009, doi:10.1175/2008JTECHA1163.1.
doi:10.1175/2008JTECHA1163.1        Google Scholar

7. Kumar, L. S., Y. H. Lee, J. X. Yeo, and J. T. Ong, "Tropical rain classification and estimation of rain from Z-R (reflectivity-rain rate) relationships," Progress In Electromagnetics Research B, Vol. 32, 107-127, 2011, doi:10.2528/PIERB11040402.
doi:10.2528/PIERB11040402        Google Scholar

8. Tokay, A. and D. A. Short, "Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds," J. Appl. Meteorol., Vol. 35, No. 3, 355-371, 1996.
doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2        Google Scholar

9. Marzuki, H. Hashiguchi, T. Kozu, T. Shimomai, Y. Shibagaki, and Y. Takahashi, "Precipitation microstructure in different Madden-Julian Oscillation phases over Sumatra," Atmos. Res., Vol. 168, 121-138, 2016.
doi:10.1016/j.atmosres.2015.08.022        Google Scholar

10. Caracciolo, C., M. Napoli, F. Porc, F. Prodi, S. Dietrich, C. Zanchi, and S. Orlandini, "Raindrop size distribution and soil rosion," J. Irrig. Drain. Eng., 461-469, 2012, doi:10.1061/(ASCE)IR.1943-4774.0000412.
doi:10.1061/(ASCE)IR.1943-4774.0000412        Google Scholar

11. Ilyas, M. A. and J. Swingler, "Piezoelectric energy harvesting from raindrop impacts," Energy, Vol. 90, 796-806, 2015.
doi:10.1016/j.energy.2015.07.114        Google Scholar

12. Stout, G. E. and E. A. Mueller, "Survey of relationships between rainfall rate and radar reflectivity in the measurement of precipitation," J. Appl. Meteorol., Vol. 7, No. 3, 465-474, 1968.
doi:10.1175/1520-0450(1968)007<0465:SORBRR>2.0.CO;2        Google Scholar

13. Kozu, T., T. Shimomai, Z. Akramin, Marzuki, Y. Shibagaki, and H. Hashiguchi, "Intraseasonal variation of raindrop size distribution at Koto Tabang, West Sumatra, Indonesia," Geophys. Res. Lett., Vol. 32, L07803, 2005, doi:10.1029/2004GL022340.        Google Scholar

14. Kozu, T., K. K. Reddy, S. Mori, M. Thurai, J. T. Ong, D. N. Rao, and T. Shimomai, "Seasonal and diurnal variations of raindrop size distribution in Asian monsoon region," J. Meteor. Soc. Japan. Ser. II, Vol. 84A, 195-209, 2006.
doi:10.2151/jmsj.84A.195        Google Scholar

15. Marzuki, T. Kozu, T. Shimomai, W. L. Randeu, H. Hashiguchi, and M. Vonnisa, "Raindrop size distributions of convective rain over equatorial Indonesia during the first CPEA campaign," Atmos. Res., Vol. 96, 645-655, 2010.
doi:10.1016/j.atmosres.2010.03.002        Google Scholar

16. Marzuki, W. L. Randeu, M. Schönhuber, V. N. Bringi, T. Kozu, and T. Shimomai, "Raindrop size distribution parameters of distrometer data with different bin sizes," IEEE Trans. Geosci. Remote Sens., Vol. 48, 3075-3080, 2010.
doi:10.1109/TGRS.2010.2043955        Google Scholar

17. Marzuki, W. L. Randeu, T. Kozu, T. Shimomai, M. Schönhuber, and H. Hashiguchi, "Estimation of raindrop size distribution parameters by maximum likelihood and L-moment methods: Effect of discretization," Atmos. Res., Vol. 112, 1-11, 2012.
doi:10.1016/j.atmosres.2012.04.003        Google Scholar

18. Marzuki, W. L. Randeu, T. Kozu, T. Shimomai, H. Hashiguchi, and M. Schönhuber, "Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-Video Disdrometer measurement, in: Michaelides, S. (Eds.) Advances in Precipitation Science," Atmos. Res., Vol. 119, 23-37, 2013.
doi:10.1016/j.atmosres.2011.08.006        Google Scholar

19. Marzuki, H. Hashiguchi, M. K. Yamamoto, S. Mori, and M. D. Yamanaka, "Regional variability of raindrop size distribution over Indonesia," Ann. Geophys., Vol. 31, 1941-1948, 2013, doi:10.5194/angeo-31-1941-2013.
doi:10.5194/angeo-31-1941-2013        Google Scholar

20. Rajopadhyaya, D. K., P. T. May, and R. A. Vincent, "A general approach to the retrieval of rain dropsize distributions from wind profiler Doppler spectra: Modeling results," J. Atmos. Oceanic Technol., Vol. 10, 710-717, 1993.
doi:10.1175/1520-0426(1993)010<0710:AGATTR>2.0.CO;2        Google Scholar

21. Renggono, F., H. Hashiguchi, S. Fukao, M. D. Yamanaka, S.-Y. Ogino, N. Okamoto, F. Murata, B. P. Sitorus, M. Kudsy, M. Kartasasmita, and G. Ibrahim, "Precipitating clouds observed by 1.3-GHz boundary layer radars in equatorial Indonesia," Ann. Geophys., Vol. 19, 889-897, 2001, doi:10.5194/angeo-19-889-2001.
doi:10.5194/angeo-19-889-2001        Google Scholar

22. Vonnisa, M., T. Kozu, and T. Shimomai, "Development of dual-frequency method to observe the vertical structure of raindrop size distribution at Kototabang," J. Ilmu Fisika (in Indonesian), Vol. 6, No. 2, 52-58, 2014.        Google Scholar

23. Peters, G., B. Fischer, and T. Andersson, "Rain observations with a vertically looking Micro Rain Radar (MRR)," Boreal Environ. Res., Vol. 7, 353-362, 2002.        Google Scholar

24. Peters, G., B. Fischer, H. Mnster, M. Clemens, and A. Wagner, "Profiles of raindrop size distributions as retrieved by micro rain radars," J. Appl. Meteorol., Vol. 44, 1930-1949, 2005.
doi:10.1175/JAM2316.1        Google Scholar

25. Cha, J.-W., S. Y. Seong, K.-H. Chang, and N. O. Sung, "Estimation of the melting layer from a Micro Rain Radar (MRR) data at the Cloud Physics Observation System (CPOS) site at Daegwallyeong Weather Station," Asia-Pacific. J. Atmos. Sci., Vol. 43, No. 1, 77-85, 2007.        Google Scholar

26. Tridon, F., J. V. Baelen, and Y. Pointin, "Aliasing in Micro Rain Radar data due to strong vertical winds," Geophys. Res. Lett., Vol. 38, L02804, 2011, doi:201110.1029/2010GL046018.        Google Scholar

27. Kneifel, S., M. Maahn, G. Peters, and C. Simmer, "Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar)," Meteorol. Atmos. Phys., Vol. 113, 75-87, 2011, doi:10.1007/s00703-011-0142-z.
doi:10.1007/s00703-011-0142-z        Google Scholar

28. Maahn, M. and P. Kollias, "Improved micro rain radar snow measurements using Doppler spectra post-processing," Atmos. Meas. Tech., Vol. 5, 2661-2673, 2012.
doi:10.5194/amt-5-2661-2012        Google Scholar

29. Das, S. and A. Maitra, "Vertical profile of rain: Ka band radar observations at tropical locations," J. Hydrol., Vol. 534, 31-41, 2016.
doi:10.1016/j.jhydrol.2015.12.053        Google Scholar

30. Peters, G., B. Fischer, and M. Clemens, "Rain attenuation of radar echoes considering finite-range resolution and using drop size distributions," J. Atmos. Ocean. Technol., Vol. 27, 829-842, 2010.
doi:10.1175/2009JTECHA1342.1        Google Scholar

31. Adirosi, E., L. Baldini, N. Roberto, P. Gatlin, and A. Tokay, "Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements," Atmos. Res., Vol. 169, Part B, 404-415, 2016.        Google Scholar

32. Axelsson, S. R. J., "Area target response of triangularly frequency-modulated continuous-wave radars," IEEE Trans. Aerosp. Electron. Syst., Vol. 14, 266-277, 1978.
doi:10.1109/TAES.1978.308647        Google Scholar

33. Atlas, D., R. C. Srivastava, and R. S. Sekhon, "Doppler radar characteristics of precipitation at vertical incidence," Rev. Geophys. Space Phys., Vol. 11, 1-35, 1973.
doi:10.1029/RG011i001p00001        Google Scholar

34. Foote, G. B. and P. S. Du Toit, "Terminal velocity of raindrops aloft," J. Appl. Meteorol., Vol. 8, No. 249, 253, 1969.        Google Scholar

35. Battaglia, A., E. Rustemeier, A. Tokay, U. Blahak, and C. Simmer, "PARSIVEL snow observations: A critical assessment," J. Atmos. Oceanic Technol., Vol. 27, 333-344, 2010.
doi:10.1175/2009JTECHA1332.1        Google Scholar

36. Marzuki, H. Hashiguchi, T. Shimomai, and W. L. Randeu, "Cumulative distributions of rainfall rate over sumatra," Progress In Electromagnetics Research M, Vol. 49, 1-8, 2016.
doi:10.2528/PIERM16043007        Google Scholar

37. Lee, G. and I. Zawadzki, "Variability of drop size distributions: Noise and noise filtering in disdrometric data," J. Appl. Meteorol., Vol. 44, 634-652, 2005.
doi:10.1175/JAM2222.1        Google Scholar

38. Rosenfeld, D. and C. W. Ulbrich, "Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A collection of Essays in Honor of David Atlas," Meteorol. Monogr., Vol. 52, 237-258, 2003.
doi:10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2        Google Scholar

39. Cifelli, R., C. R.Williams, D. K. Rajopadhyaya, S. K. Avery, K. S. Gage, and P. T. May, "Drop-size distribution characteristics in tropical mesoscale convective systems," J. Appl. Meteorol., Vol. 39, 760-77, 2000.
doi:10.1175/1520-0450(2000)039<0760:DSDCIT>2.0.CO;2        Google Scholar

40. Thurai, M., T. Iguchi, T. Kozu, J. D. Eastment, C. L. Wilson, and J. T. Ong, "Radar observation in Singapore and their implications for the TRMM precipitation radar retrievel algorithms," Radio Sci., Vol. 38, 2003, doi:10.1029/2002RS002855.        Google Scholar