Vol. 52
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-12-06
Analysis of Scattering from Composite Conductor and Dielectric Objects Using Single Integral Equation Method and MLFMA Based on JMCFIE
By
Progress In Electromagnetics Research M, Vol. 52, 141-152, 2016
Abstract
A highly efficient hybrid method of single integral equation (SIE) and electric/magnetic current combined field integral equation (JMCFIE) is presented, named as SJMCFIE, for analysing scattering from composite conductor and dielectric objects, in which, SIE can reduce one half unknowns in dielectric region. The resultant matrix equation of SJMCFIE can be represented in the iteration form, which makes the computation complexity reduced further, and coupling mechanism of composite model becomes more explicit. For accelerating matrix-vector multiplications (MVMs), Multilevel Fast Multipole Algorithm (MLFMA) is employed to combine SJMCFIE to formulate SJMCFIE-MLFMA at last, which is the extension of SIE-MLFMA in the proposed reference. Finally, some examples verify the new hybrid method on accuracy, memory storage, computation efficiency compared to SIE-MLFMA and JMCFIE-MLFMA. Besides, SJMCFIE-MLFMA can also be used to analyse the complete coated model's scattering.
Citation
Hua-Long Sun, Chuang-Ming Tong, and Peng Peng, "Analysis of Scattering from Composite Conductor and Dielectric Objects Using Single Integral Equation Method and MLFMA Based on JMCFIE," Progress In Electromagnetics Research M, Vol. 52, 141-152, 2016.
doi:10.2528/PIERM16081306
References

1. Harrington, R. F., Field Computation by Moment Methods, Oxford University Press, Oxford, England, 1996.

2. Peterson, A. and R. Mittra, "Convergence of the conjugate gradient method when applied to matrix equaitions representing electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 34, No. 12, 1447-1454, 1986.
doi:10.1109/TAP.1986.1143780

3. Volakis, J. L. and K. Sertel, Integral Equation Methods for Electromagnetics, SciTech Publishing, Raleigh, NC, USA, 2012.

4. Ylä-Oijala, P. and M. Taskinen, "Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1168-1173, 2005.
doi:10.1109/TAP.2004.842640

5. Ewe, W. B., L. W. Li, and M. S. Leong, "Fast solution of mixed dielectric/conducting scattering problem using volumesurface adaptive integral method," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 3071-3077, 2004.
doi:10.1109/TAP.2004.835147

6. Eibert, T. F., "Some scattering results computed by surface-integral-equation and hybrid finite-element-boundary-integral techniques, accelerated by the multilevel fast multipole method," IEEE Antennas Propag. Mag., Vol. 49, No. 2, 61-69, 2007.
doi:10.1109/MAP.2007.376638

7. Ylä-Oijala, P., M. Taskinen, and S. Järvenpää, "Analysis of surface integral equations in electromagnetic scattering and radiation problems," Engineering Analysis with Boundary Elements, Vol. 32, 196209, 2008.

8. Donepudi, K. C., L. M. Jin, and W. C. Chew, "A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies," IEEE Trans. Antennas Propag., Vol. 2, No. 11, 2814-2821, 2002.

9. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301

10. Ubeda, E., J. M. Tamayo, and J. M. Rius, "Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects," Progress In Electromagnetics Research, Vol. 119, 85-105, 2011.
doi:10.2528/PIER11051715

11. Ergül, Ö and L. Gürel, "Fast and accurate analysis of large-scale composite structures with the parallel multilevel fast multipole algorithm," J. Opt. Soc. Amer. A, Vol. 30, No. 30, 509-517, 2013.
doi:10.1364/JOSAA.30.000509

12. Lu, C. C. and Z. Y. Zeng, "Scattering and radiation modeling using hybrid integral approach and mixed mesh element discretization," PIERS Online, Vol. 1, 70-73, 2005.
doi:10.2529/PIERS050128130811

13. Ylä-Oijala, P. and M. Taskinen, "Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3316-3323, 2005.
doi:10.1109/TAP.2005.856313

14. Yeung, M. S., "Single integral equation for electromagnetic scattering by three-dimensional homogeneous dielectric objects," IEEE Trans. Antennas Propag., Vol. 47, No. 10, 1615-1622, 1999.
doi:10.1109/8.805907

15. Wang, P., M. Y. Xia, and L. Z. Zhou, "Analysis of scattering by composite conducting and dielectric bodies using the single integral equation method and multilevel fast multipole algorithm," Microw. and Opt. Tech. Lett., Vol. 48, No. 6, 1154-1156, 2006.

16. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

17. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.

18. Greengard, L. and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., Vol. 73, 325-348, 1987.
doi:10.1016/0021-9991(87)90140-9

19. Yan, S., J.-M. Jin, and Z. P. Nie, "Improving the accuracy of the second-kind Fredholm integral equations by using the Buffa-Christiansen functions," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1299-1310, 2011.
doi:10.1109/TAP.2011.2109364

20. Yan, S., J.-M. Jin, and Z. P. Nie, "A comparative study of Calderon preconditioners for PMCHWT equations," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2375-2383, 2010.
doi:10.1109/TAP.2010.2048881

21. Budko, N. V. and A. B. Samokhin, "Spectrum of the volume integral operator of electromagnetic scattering," SIAM J. Sci. Comput., Vol. 28, No. 2, 682-700, 2005.
doi:10.1137/050630660

22. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

23. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.

24. Cui, T. J., W. C. Chew, G. Chen, and J. M. Song, "Efficient MLFMA, RPFMA, and FAFFA algorithms for EM scattering by very large structures," IEEE Trans. Antennas Propag., Vol. 52, No. 3, 759-770, 2004.
doi:10.1109/TAP.2004.825491