Vol. 70
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-10-19
A New Analytically Regularizing Method for the Analysis of the Scattering by a Hollow Finite-Length PEC Circular Cylinder
By
Progress In Electromagnetics Research B, Vol. 70, 55-71, 2016
Abstract
In this paper, a new analytically regularizing method, based on Helmholtz decomposition and Galerkin method, for the analysis of the electromagnetic scattering by a hollow finite-length perfectly electrically conducting (PEC) circular cylinder is presented. After expanding the involved functions in cylindrical harmonics, the problem is formulated as an electric field integral equation (EFIE) in a suitable vector transform (VT) domain such that the VT of the surface curl-free and divergence-free contributions of the surface current density, adopted as new unknowns, are scalar functions. A fast convergent second-kind Fredholm infinite matrix-operator equation is obtained by means of Galerkin method with suitable expansion functions reconstructing the expected physical behaviour of the unknowns. Moreover, the elements of the scattering matrix are efficiently evaluated by means of analytical asymptotic acceleration technique.
Citation
Mario Lucido, Marco Donald Migliore, and Daniele Pinchera, "A New Analytically Regularizing Method for the Analysis of the Scattering by a Hollow Finite-Length PEC Circular Cylinder," Progress In Electromagnetics Research B, Vol. 70, 55-71, 2016.
doi:10.2528/PIERB16081404
References

1. Mei, K. K. and J. G. Van Bladel, "Scattering by perfectly-conducting rectangular cylinders," IEEE Trans. Antennas Propag., Vol. 11, No. 2, 185-192, Mar. 1963.
doi:10.1109/TAP.1963.1137996

2. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I: Theory," IEEE Trans. Antennas Propagat., Vol. 38, 335-344, Mar. 1990.
doi:10.1109/8.52240

3. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part II: Implementation and results for contiguous half-spaces," IEEE Trans. Antennas Propagat., Vol. 38, 345-352, Mar. 1990.
doi:10.1109/8.52241

4. Eswaran, K., "On the solutions of a class of dual integral equations occurring in diffraction problems," Proc. Roy. Soc. London, Ser. A, 399-427, 1990.
doi:10.1098/rspa.1990.0066

5. Veliev, E. I. and V. V. Veremey, "Numerical-analytical approach for the solution to thewave scattering by polygonal cylinders and flat strip structures," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, and O. A. Tretyakov, Eds., Science House, Tokyo, 1993.

6. Davis, A. M. J. and R. W. Scharstein, "Electromagnetic plane wave excitation of an open-ended finite-length conducting cylinder," Journal of Electromagnetic Waves and Applicatioons, Vol. 7, No. 2, 301-319, 1993.
doi:10.1163/156939393X00354

7. Vitebskiy, S., K. Sturgess, and L. Carin, "Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 44, 143-151, Feb. 1996.
doi:10.1109/8.481640

8. Sheng, X. Q., J. M. Jin, J. M. Song, W. C. Chew, and C. C. Lu, "Solution of combined-field integral equation using multievel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propagat., Vol. 46, No. 11, 1718-1726, Nov. 1998.
doi:10.1109/8.736628

9. Hongo, K. and H. Serizawa, "Diffraction of electromagnetic plane wave by rectangular plate and rectangular hole in the conducting plate," IEEE Trans. Antennas Propag., Vol. 47, No. 6, 1029-1041, Jun. 1999.
doi:10.1109/8.777128

10. He, J. Q., T. J. Yu, N. Geng, and L. Carin, "Method of moments analysis of electromagnetic scattering from a general three-dimensional dielectric target embedded in a multilayered medium," Radio Sci., Vol. 35, 305-313, Mar./Apr. 2000.
doi:10.1029/1999RS002230

11. Geng, N., A. Sullivan, and L. Carin, "Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space," IEEE Trans. Antennas Propagat., Vol. 49, 740-748, May 2001.
doi:10.1109/8.929628

12. Tsalamengas, J. L., "Rapidly converging direct singular integral-equation techniques in the analysis of open microstrip lines on layered substrates," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 3, 555-559, Mar. 2001.
doi:10.1109/22.910563

13. Araneo, R., S. Celozzi, G. Panariello, F. Schettino, and L. Verolino, "Analysis of microstrip antennas by means of regularization via Neumann series," Review of Radio Science 1999-2002, 111-124, W. R. Stone, Ed., IEEE Press, Wiley Interscience, Piscataway, NJ/newyork, 2002.

14. Ozkan, E., F. Dikmen, and Y. A. Tuchkin, "Scalar wave diffraction by perfectly soft thin circular cylinder of finite length; Analytical regularization method," Turkish Journal of Electrical Engineering, Vol. 10, No. 3, 459-472, 2002.

15. Losada, V., R. R. Boix, and F. Medina, "Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 41, 988-997, May 2003.
doi:10.1109/TGRS.2003.810678

16. Lucido, M., G. Panariello, and F. Schettino, "Accurate and efficient analysis of stripline structures," Microwave and Optical Technology Letters, Vol. 43, No. 1, 14-21, Oct. 2004.
doi:10.1002/mop.20361

17. Tsalamengas, J. L., "Exponentially converging Nystrom's methods for systems of singular integral equations with applications to open/closed strip- or slot-loaded 2-D structures," IEEE Antennas Propag. Mag., Vol. 54, No. 5, 1549-1558, 2006.
doi:10.1109/TAP.2006.874348

18. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

19. Mei, C., M. Hasanovic, J. K. Lee, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional inhomogeneous bianisotropic body," PIERS Online, Vol. 3, No. 5, 680-684, 2007.
doi:10.2529/PIERS061005231254

20. Lucido, M., G. Panariello, and F. Schettino, "Electromagnetic scattering by multiple perfectly conducting arbitrary polygonal cylinders," IEEE Trans. Antennas Propag., Vol. 56, 425-436, Feb. 200.

21. Lucido, M., G. Panariello, and F. Schettino, "TE scattering by arbitrarily connected conducting strips," IEEE Trans. Antennas Propag., Vol. 57, 2212-2216, Jul. 2009.

22. Sauleau, R., T. M. Benson, and A. I. Nosich, "Dual integral equations technique in electromagnetic scattering by a thin disk," Progress In Electromagnetic Research B, Vol. 16, 107-126, 2009.

23. Panin, S. B., P. D. Smith, E. D. Vinogradova, Y. A. Tuchkin, and S. S. Vinogradov, "Diffraction from arbitrary shaped bodies of revolution: Analytical regularization," Journal of Engineering Mathematics, Vol. 65, No. 2, 125-141, Oct. 2009.
doi:10.1007/s10665-009-9276-0

24. Balaban, M. V., R. Sauleau, T. M. Benson, and A. I. Nosich, "Accurate qualification of the purcell effect in the presence of a dielectric microdisk of nanoscale thickness," IET Micro and Nano Letters, Vol. 6, No. 6, 393-396, 2011.
doi:10.1049/mnl.2011.0176

25. Bulygin, V. S., A. I. Nosich, and Y. V. Gandel, "Nystrom-type method in three-dimensional electromagnetic diffraction by a finite PEC rotationally symmetric surface," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4710-4718, 2012.
doi:10.1109/TAP.2012.2209194

26. Coluccini, G., M. Lucido, and G. Panariello, "TM scattering by perfectly conducting polygonal cross-section cylinders: A new surface current density expansion retaining up to the second-order edge behavior," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 407-412, Jan. 2012.
doi:10.1109/TAP.2011.2167924

27. Lucido, M., "An analytical technique to fast evaluate mutual coupling integrals in spectral domain analysis of multilayered coplanar coupled striplines," Microwave and Optical Technology Letters, Vol. 54, No. 4, 1035-1039, Apr. 2012.
doi:10.1002/mop.26674

28. Lucido, M., "A new high-efficient spectral-domain analysis of single and multiple coupled microstrip lines in planarly layered media," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 7, 2025-2034, Jul. 2012.
doi:10.1109/TMTT.2012.2195025

29. Balaban, M. V., O. V. Shapoval, and A. I. Nosich, "THz wave scattering by a graphene strip and a disk in the free space: Integral equation analysis and surface plasmon resonances," IOP Journal of Optics, Vol. 15, No. 11, 114007/9, 2013.

30. Bulygin, V. S., T. M. Benson, Y. V. Gandel, and A. I. Nosich, "Full-wave analysis and optimization of a TARA-like shield-assisted paraboloidal reflector antenna using nystrom-type method," IEEE Trans. Antennas Propag., Vol. 61, No. 10, 4981-4989, 2013.
doi:10.1109/TAP.2013.2275248

31. Coluccini, G., M. Lucido, and G. Panariello, "Spectral domain analysis of open single and coupled microstrip lines with polygonal cross-section in bound and leaky regimes," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 2, 736-745, Feb. 2013.
doi:10.1109/TMTT.2012.2231424

32. Lucido, M., "An efficient evaluation of the self-contribution integrals in the spectral-domain analysis of multilayered striplines," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 360-363, Mar. 2013.
doi:10.1109/LAWP.2013.2252139

33. Coluccini, G. and M. Lucido, "A new high e±cient analysis of the scattering by a perfectly conducting rectangular plate," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2615-2622, May 2013.
doi:10.1109/TAP.2012.2237533

34. Lucido, M., "Electromagnetic scattering by a perfectly conducting rectangular plate buried in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 10, 6368-6378, Oct. 2014.
doi:10.1109/TGRS.2013.2296353

35. Lucido, M., G. Panariello, and F. Schettino, "An EFIE formulation for the analysis of leaky-wave antennas based on polygonal cross-section open waveguides," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 983-986, May 2014.
doi:10.1109/LAWP.2014.2323431

36. Lucido, M., "Scattering by a tilted strip buried in a lossy half-space at oblique incidence," Progress In Electromagnetics Research M, Vol. 37, 51-62, 2014.
doi:10.2528/PIERM14041507

37. Corsetti, F., M. Lucido, and G. Panariello, "Effective analysis of the propagation in coupled rectangular-core waveguides," IEEE Photonics Technology Letters, Vol. 26, No. 18, 1855-1858, Sept. 2014.
doi:10.1109/LPT.2014.2338074

38. Di Murro, F., M. Lucido, G. Panariello, and F. Schettino, "Guaranteed-convergence method of analysis of the scattering by an arbitrarily oriented zero-thickness PEC disk buried in a lossy half-space," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3610-3620, Aug. 2015.
doi:10.1109/TAP.2015.2438336

39. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

40. Dudley, D. G., "Error minimization and convergence in numerical methods," Electromagnetics, Vol. 5, 89-97, 1985.
doi:10.1080/02726348508908142

41. Hsiao, G. C. and R. E. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Trans. Antennas Propag., Vol. 45, 316-328, Mar. 1997.
doi:10.1109/8.558648

42. Nosich, A. I., "The method of analytical regularization in wave-scattering and eigenvalue problems: Foundations and review of solutions," IEEE Antennas Propag. Mag., Vol. 42, No. 3, 34-49, Jun. 1999.
doi:10.1109/74.775246

43. Kolmogorov, A. and S. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover, New York, 1999.

44. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Verlag Harri Deutsch, 1984.

45. Meixner, J., "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propag., Vol. 20, 442-446, 1972.
doi:10.1109/TAP.1972.1140243

46. Van Bladel, J., "A discussion of Helmholtz' theorem on a surface," AEU, Vol. 47, No. 3, 1993.

47. Geng, N. and L. Carin, "Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium," IEEE Trans. Antennas Propag., Vol. 47, 610-619, Apr. 1999.
doi:10.1109/8.768799

48. Gradstein, S. and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York, 2000.