Vol. 51
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-24
An Axisymmetric Cylindrical Resonating Cavity with Hole
By
Progress In Electromagnetics Research M, Vol. 51, 83-91, 2016
Abstract
The problem of the shift and broadening of the normal modes of electromagnetic oscillations in a cylindrical cavity resonator with axisymmetric interior and ideally conducting walls with a circular hole at the base is solved. It is shown that the existence of the hole perturbs the normal frequencies, and this perturbation is calculated. The method of solution is based on the Rayleigh-Schrodinger perturbation theory. It is found that the frequency shift depends on the value of the perturbed electric field at the hole. This field is calculated using the quasistatic approximation, which involves the solution of a mixed boundary value problem for the potential. An expression for the frequency shift and broadening is obtained.
Citation
Babak Makkinejad, "An Axisymmetric Cylindrical Resonating Cavity with Hole," Progress In Electromagnetics Research M, Vol. 51, 83-91, 2016.
doi:10.2528/PIERM16082202
References

1. Strayer, D. M., G. J. Dick, and J. E. Mercereau, "Performance of a superconductor cavity stabilized ruby maser oscillator," IEEE Trans. Magnetics, Vol. 23, No. 2, 1624, March 1987.
doi:10.1109/TMAG.1987.1064846

2. Dick, G. J. and D. M. Strayer, "Development of the superconducting cavity maser as a stable frequency source," Proceedings of 38th Annual Frequency Control Symposium, Cat. No. 84CH2062-8, 435-436, IEEE, 1984.

3. Strayer, D. M., G. J. Dick, and E. Tward, "Superconductor-sapphire cavity for an all-cryogenic SCSO," IEEE Trans. Magnetics, Vol. 19, 512, 1983.
doi:10.1109/TMAG.1983.1062377

4. Iny, O. and M. B. Barmatz, JPL New Technology Report, NPO-19356, Jet Propulsion Laboratory, California Institute of Technology, December 1995.

5. Barmatz, M. B. and O. Iny, JPL New Technology Report, NPO-19101, Jet Propulsion Laboratory, California Institute of Technology, December 1995.

6. Dick, G. J., D. G. Santiago, and A. Prata, "Mode orientation control for sapphire dielectric ring resonator," JPL New Technology Report, NPO-18933, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, January 1996.

7. Dick, G. J. and D. G. Santiago, "Temperature compensated sapphire microwave resonator," JPL New Technology Report, NPO-19414, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, March 1996.

8. Estin, A. J. and H. E. Bussey, "Error in dielectric measurements due to a sample insertion hole in cavity," IRE Trans. Microwave Theory and Techniques, Vol. 8, 650-653, 1960.

9. Meyer, W., "Dielectric Measurements on polymeric materials by using superconducting microwave resonators," IEEE Trans. on Microwave Theory and Techniques, Vol. 25, 1092-1099, January 1977.
doi:10.1109/TMTT.1977.1129281

10. Thomassen, K. I., "Microwave plasma density measurements," J. Appl. Phys., Vol. 36, 3642-2286, 1965.
doi:10.1063/1.1703058

11. Li, S. H. and R. G. Boisiso, "Composite hole conditions on complex permittivity measurements using microwave cavity perturbation technique," IEEE Trans. on Microwave Theory and Techniques, Vol. 30, No. 1, 100-103, January 1982.
doi:10.1109/TMTT.1982.1131024

12. Gauthier, S., L. Marchildon, and C. Akyel, "Shift of the complex resonance frequency of a dielectric-loaded cavity produced by small sample insertion holes," IEEE Trans. on Microwave Theory and Techniques, Vol. 37, No. 4, 801-804, April 1989.
doi:10.1109/22.18859

13. Jackson, J. D., Classical Electrodynamics, 2nd Ed., 353-356, Wiley, 1975.

14. Abromovitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Chap. 9, Dover Publications, 1965.

15. Watson, G. N., Theory of Bessel Functions, 2nd Ed., Cambridge University Press, (I obtained the formula for the normalization constant by noting the equality of normalization integrals for electric and magnetic fields.), 1952.

16. Makkinejad, B. and G. W. Ford, "An axisymmetric spherical cavity resonator II. Effect of the hole," Physical Review B II, Vol. 44, No. 16, 8547, October 15, 1991.
doi:10.1103/PhysRevB.44.8547

17. Goubau, G., Electromagnetic Waveguides and Cavities, 124, Pergamon Press, 1961.

18. Stokes, G. G., "On the dynamical theory of diffraction," Trans. Cambridge. Phil. Soc., Vol. 9, 1-62, 1849.

19. Lorenz, L., "Ueber die refexion des Lichs an der Gr¨anzfl¨ache zweier isotropen durchsichtigen Mittel," Pogg. Ann.,, Vol. 111, 460, 1860.

20. Strutt, J. W., "On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids or elliptic cylinders, and on the passage of electric waves through a circular aperture in a conducting screen," Phil. Mag., Vol. 44, 28-52, 1897.

21. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7, 163, 1944.
doi:10.1103/PhysRev.66.163

22. Bouwkamp, C. J., "Diffraction theory, a critique of some recent developments," Research Report, No. EM-50, Mathematics Research Group, New York University, 1953.

23. Landau, D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, 1960.

24. Ford, G. W. and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Physics Reports, Vol. 113, No. 4, 205, 1984.
doi:10.1016/0370-1573(84)90098-X

25. Forsythe, W. E., The Smithsonian Physical Tables, 9th Ed., 430, The Smithsonian Institution, 1954.