1. Irishina, N. and A. Torrente, "Brain stroke detection by microwaves using prior information from clinical databases," Abstract and Applied Analysis, Vol. 2013, Article ID 412638, 8 pages, 2013. Google Scholar
2. AlShehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202 Google Scholar
3. Shao, W. and B. Zhou, "UWB microwave imaging for breast tumor detection in inhomogeneous tissue," Proceedings of the 2005 IEEE Engineering in Medicine and Biology, 27th Annual Conference, 1496-1499, Shanghai, China, 2005.
doi:10.1109/IEMBS.2005.1616715 Google Scholar
4. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3312-3319, Nov. 2005.
doi:10.1109/TMTT.2005.857330 Google Scholar
5. Ireland, D. and M. E. Bialkowski, "Microwave head imaging for stroke detection," Progress In Electromagnetics Research M, Vol. 21, 163-175, 2011.
doi:10.2528/PIERM11082907 Google Scholar
6. Mobashsher, T., A. M. Abbosh, and Y. Wang, "Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 9, 1826-1836, Sep. 2014.
doi:10.1109/TMTT.2014.2342669 Google Scholar
7. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Transactions on Microwave Theory And Techniques, Vol. 53, No. 5, 1761-1776, May 2005.
doi:10.1109/TMTT.2005.847068 Google Scholar
8. Persson, M., A. Fhager, H. Trefna, Y. Yu, T. McKelvey, G. Pegenius, et al. "Microwave-based stroke diagnosis making global pre-hospital thrombolytic treatment possible," IEEE Transactions on Biomedical Engineering, Vol. 61, 2806-2817, Nov. 2014. Google Scholar
9. Mohammed, B., A. Abbosh, and D. Ireland, "Stroke detection based on variations in reflection coefficients of wideband antennas," Antennas and Propagation Society International Symposium (APSURSI), IEEE, 2012. Google Scholar
10. Mustafa, S., A. Abbosh, B. Henin, and D. Ireland, "Brain stroke detection using continuous wavelets transform matching filters," Biomedical Engineering Conference (CIBEC), 2012 Cairo International, 194-197, 2012.
doi:10.1109/CIBEC.2012.6473328 Google Scholar
11. Khorshidi, M. A., T. McKelvey, M. Persson, and H. D. Trefna, "Classification of microwave scattering data based on a subspace distance with application to detection of bleeding stroke," 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 301-304, 2009. Google Scholar
12. Watanabe, S. and N. Pakvasa, "Subspace method in pattern recognition," Proc. Int. Joint Conf. Pattern Recognition, 25-32, 1973. Google Scholar
13. Yu, Y. and T. McKelvey, "Unified subspace classification framework developed for diagnostic system using microwave signal," 231st Eur. Signal Process. Conf., Marrakech, Marocco, Sep. 2013. Google Scholar
14. Yu, Y., "Classification of high dimensional signals with small training sample size with applications towards microwave based detection systems," Lic. Thesis, Chalmers Univ. Technol., Goteborg, Sweden, 2013. Google Scholar
15. Yu, Y. and T. McKelvey, "A unified subspace classification framework developed for dlagnostic system using microwave signal," European Signal Processing Conference, 2219-5491, 2013. Google Scholar
16. Golub, G. H. and C. F. Van Loan, Matrix Computations, 2nd Ed., Johns Hopkins Univ. Press, 1989.
17. Ireland, D. and A. Abbosh, "Modeling human head at microwave frequencies using optimized debye models and FDTD method," IEEE Transactions on Antennas And Propagation, Vol. 61, No. 4, 2352-2355, Apr. 2013.
doi:10.1109/TAP.2013.2242037 Google Scholar
18. Ireland, D. and M. E. Bialkowski, "Microwave head imaging for stroke detection," Progress In Electromagnetics Research M, Vol. 21, 163-175, 2011.
doi:10.2528/PIERM11082907 Google Scholar
19. Ireland, D. and M. E. Bialkowski, "Feasibility study on microwave stroke detection using a realistic phantom and the FDTD method," Proc. Asia-Pacific Microwave Conf., 1-4, 2010. Google Scholar
20. Zubal, G., C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, "Computerized three-dimensional segmented human anatomy," Medical physics, Vol. 21, 299-302, 1994.
doi:10.1118/1.597290 Google Scholar
21. Gabriel, S., R. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, 2251, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
22. Shen, W., "The principle of vector network analyzer,", Vol. 5, 018, 2001. Google Scholar