Vol. 71
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-12-02
Theoretical Modelling of Kelvin Helmholtz Instability Driven by an Ion Beam in a Negative Ion Plasma
By
Progress In Electromagnetics Research B, Vol. 71, 167-181, 2016
Abstract
An ion beam propagating through a magnetized plasma having positive ions K+ (Potassium ions), electrons and negative ions SF6- (Sulphur hexafluoride ions) drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. For two modes, K+ and SF6-, the frequency and the growth rate of the unstable wave increase with the relative density of negative ions. It is observed that the beam has destabilizing effect on the growth rate of KHI in the presence of negative ions. However, at the large concentration of the negative ions beam stabilizes the growth rate of KHI. An increase in mass of negative ions also stabilizes the growth rate of KHI modes. It is also observed that increase in ion beam velocities and densities play a significant role in changing the growth rate of KHI modes. Moreover, the finite geometry effects tend to modify the dispersion properties and growth of KHI modes.
Citation
Kavita Rani, and Suresh C. Sharma, "Theoretical Modelling of Kelvin Helmholtz Instability Driven by an Ion Beam in a Negative Ion Plasma," Progress In Electromagnetics Research B, Vol. 71, 167-181, 2016.
doi:10.2528/PIERB16092304
References

1. D'Angelo, N., "Ultralow frequency fluctuations at the polar cusp boundaries," J. Geophys. Res., Vol. 78, No. 7, 1206-1209, 1973.
doi:10.1029/JA078i007p01206

2. Pu, Z. Y. and M. G. Kivelson, "Kelvin Helmholtz instability at magnetopause: Energy flux into magnetosphere," J. Geophys. Res., Vol. 88, No. A2, 853-861, 1983.
doi:10.1029/JA088iA02p00853

3. Miura, A., "Kelvin Helmholtz instability for supersonic shear flow at the magnetospheric boundary," Geophys. Res. Lett., Vol. 17, No. 6, 749-752, 1990.
doi:10.1029/GL017i006p00749

4. Hasegawa, H., M. Fujimoto, T. D. Phan, H. Reme, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. T. Dokoro, "Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices," Nature, Vol. 430, No. 7001, 755-758, 2004.
doi:10.1038/nature02799

5. Migliuolo, S., "Velocity shear instabilities in the anisotropic solar wind and the heating of ions perpendicular to the magnetic field," J. Geophys. Res., Vol. 89, No. A1, 27-36, 1984.
doi:10.1029/JA089iA01p00027

6. Ershkovich, A. I., "Kelvin-Helmholtz instability in type-1 comet tails and associated phenomena," Space Sci. Rev., Vol. 25, No. 1, 3-34, 1980.
doi:10.1007/BF00200796

7. Penz, T., N. V. Erakaev, H. K. Biernet, H. Lammer, U. V. Amerstorfer, H. Gunell, E. Kallio, S. Barabash, S. Orsini, A. Milillo, and W. Baumjohann, "Ion loss Mars caused by Kelvin-Helmholtz instability," Planet. Space Sci., Vol. 52, No. 13, 1157-1167, 2004.
doi:10.1016/j.pss.2004.06.001

8. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Chap. XI, 481, Clarendon Press, Oxford, 1961.

9. D'Angelo, N., "Kelvin-Helmholtz instability in a fully ionized plasma in a magnetic field," Phys. Fluids , Vol. 8, No. 9, 1748-1750, 1965.
doi:10.1063/1.1761496

10. D'Angelo, N. and S. V. Goeler, "Investigation of Kelvin Helmholtz instability in a cesium plasma," Phys. Fluids, Vol. 9, No. 2, 309-313, 1966.
doi:10.1063/1.1761674

11. Smith, C. G. and S. V. Goeler, "The Kelvin-Helmholtz instability in a collisionless plasma model," Phys. Fluids, Vol. 11, No. 12, 2665-2668, 1968.
doi:10.1063/1.1691873

12. D' Angelo, N. and B. Song, "The Kelvin-Helmholtz instability in dusty plasmas," Planet. Space Sci., Vol. 38, No. 12, 1577-1579, 1990.
doi:10.1016/0032-0633(90)90164-L

13. D'Angelo, N. and B. Song, "Kelvin-Helmholtz instability in a plasma with negative ions," IEEE Trans. Plasma Sci., Vol. 19, No. 1, 42-46, 1991.
doi:10.1109/27.62365

14. An, T., R. L. Merlino, and N. D'Angelo, "The effect of negative ions on the Kelvin-Helmholtz instability in a magnetized potassium plasma," Phys. Lett. A, Vol. 14, No. 1-2, 47-52, 1996.
doi:10.1016/0375-9601(96)00147-8

15. Luo, Q. Z., N. D'Angelo, and R. L. Merlino, "The Kelvin-Helmholtz instability in a plasma with negatively charged dust," Phys. Plasmas, Vol. 8, No. 1, 31-35, 2001.
doi:10.1063/1.1323755

16. Ostrikov, K., "Surface science of plasma exposed surfaces --- A challenge for applied plasma science," Vacuum, Vol. 83, No. 1, 4-10, 2008.
doi:10.1016/j.vacuum.2008.03.051

17. Ostrikov, K., S. Kumar, and H. Sugai, "Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions," Phys. Plasmas, Vol. 8, No. 7, 3490-3497, 2001.
doi:10.1063/1.1375149

18. Ostrikov, K., "Colloquium: Reactive plasmas as a versatile nano fabrication tool," Rev. Mod. Phys., Vol. 77, No. 2, 489-511, 2005.
doi:10.1103/RevModPhys.77.489

19. Sharma, S. C. and M. P. Srivastava, "Ion beam driven ion cyclotron waves in a plasma cylinder with negative ions," Phys. Plasmas, Vol. 8, No. 3, 679-686, 2001.
doi:10.1063/1.1336533

20. Sharma, S. C. and A. Gahlot, "Ion beam driven ion-acoustic waves in a plasma cylinder with negative ions," Phys. Plasmas, Vol. 15, No. 7, 0737051-0737056, 2008.
doi:10.1063/1.2949708

21. Song, B., N. D'Angelo, and R. L. Merlino, "Ion-acoustic waves in a plasma with negative ions," Phys. Fluids B, Vol. 3, No. 2, 284-287, 1991.
doi:10.1063/1.859736

22. An, T., R. L. Merlino, and N. D' Angelo, "Lower hybrid waves in a plasma with negative ions," Phys. Fluids B, Vol. 5, No. 6, 1917-1918, 1993.
doi:10.1063/1.860775

23. D'Angelo, N. and R. L. Merlino, "Electrostatic ion-cyclotron waves in a plasma with negative ions," IEEE Trans. Plasma Sci., Vol. 14, No. 3, 285-286, 1986.
doi:10.1109/TPS.1986.4316545

24. Rosenberg, M. and R. L. Merlino, "Ion-acoustic instability in a dusty negative ion plasma," Planet. Space Sci., Vol. 55, No. 10, 1464-1469, 2007.
doi:10.1016/j.pss.2007.04.012

25. Yatsui, K. and Y. Yamamoto, "Heating of plasma ions by a modulated beam," Phys. Letters, Vol. 30A, No. 2, 135-136, 1969.
doi:10.1016/0375-9601(69)91182-7

26. Chang, R. P., "Lower hybrid beam-plasma instability," Phys. Rev. Lett., Vol. 35, No. 5, 285-288, 1975.
doi:10.1103/PhysRevLett.35.285

27. Prakash, V., S. C. Sharma, Vijayshri, and R. Gupta, "Ion beam driven resonant ion-cyclotron instability in a magnetized dusty plasma," Phys. Plasmas, Vol. 21, No. 3, 0337011-0337016, 2014.
doi:10.1063/1.4868433

28. Chow, V. W. and M. Rosenberg, "Electrostatic ion cyclotron instabilities in negative ion plasmas," Plasma Phys., Vol. 3, No. 4, 1202-1211, 1996.
doi:10.1063/1.871744

29. Kim, S. H., J. R. Heinrich, and R. L. Merlino, "Electrostatic ion-cyclotron waves in a plasma with heavy negative ions," Planet. Space Sci., Vol. 56, No. 11, 1552-1559, 2008.
doi:10.1016/j.pss.2008.07.020

30. Tyagi, R. K., R. S. Pandey, and A. Kumar, "Surface coating by velocity shear instability in plasma," Theoretical Foundations of Chem. Engg., Vol. 46, No. 5, 508-514, 2012.
doi:10.1134/S0040579512050193

31. Stoffels, E., W. W. Stoffels, and G. M. W. Kroesen, "Plasma chemistry and surface processes of negative ions," Plasma Sources Sci. Technol., Vol. 10, No. 1, 311-317, 2001.
doi:10.1088/0963-0252/10/2/321

32. Kuznetsova, V. P., S. Yu. Tarasov, and A. I. Dmitriev, "Nanostructuring burnishing and subsurface shear instability," Journ. of Mat. Processing Tech., Vol. 217, No. 1, 327-335, 2015.
doi:10.1016/j.jmatprotec.2014.11.023

33. Rosenberg, M. and P. K. Shukla, "Instability of ion flows in bounded dusty plasma systems," Phys. Plasmas, Vol. 5, No. 10, 3786, 1998.
doi:10.1063/1.872743

34. Matsuoka, C., "Kelvin-Helmholtz instability and roll-up," Scholarpedia, Vol. 9, No. 3, 11821, 2014.
doi:10.4249/scholarpedia.11821

35. Moore, T. W., K. Nykyri, and A. P. Dimmock, "Cross-scale energy transport in space plasmas," Nature Physics, 2016, doi:10.1038/nphys3869.