Vol. 52
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-12-08
Electrodeless Measurement Technique of Complex Dielectric Permittivity of High-k Dielectric Films in the Millimeter Wavelength Range
By
Progress In Electromagnetics Research M, Vol. 52, 161-167, 2016
Abstract
An electrodeless measurement technique of complex dielectric permittivity of high-K dielectric films is described. The technique is based on a quasi-optic Fabry-Perot resonator and modified for investigation of two-layer dielectric structures --- substrate/K-film. This procedure is destined to be used for providing a simple intermediate control of parameters of high-K films before the following technological process. Regimes of measurements providing the most sensitive conditions for definition of film parameters are considered. The proposed method is tested on two-layer structures with well-known parameters and is used for characterization of ferroelectric (Ba,Sr)TiO3 films in the millimeter wavelength range (~50 GHz).
Citation
Igor V. Kotelnikov Andrey Altynnikov Anatoly Konstantinovich Mikhailov Valentina V. Medvedeva Andrey B. Kozyrev , "Electrodeless Measurement Technique of Complex Dielectric Permittivity of High-k Dielectric Films in the Millimeter Wavelength Range," Progress In Electromagnetics Research M, Vol. 52, 161-167, 2016.
doi:10.2528/PIERM16100505
http://www.jpier.org/PIERM/pier.php?paper=16100505
References

1. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics. Measurement and Materials Characterization, John Wiley & Sons, Ltd., 2004.
doi:10.1002/0470020466

2. Spartak, G., Ferroelectrics in Microwave Devices, Circuits and Systems: Physics, Modeling, Fabrication and Measurements, Springer Science & Business Media, 2009.

3. Jerzy, K., "Frequency domain complex permittivity measurements at microwave frequencies," Measurement Science and Technolpgy, Institute of Physics, Meas. Sci. Technol., 17, 2006.

4. Lee, C.-S. and C.-L. Yang, "Thickness and permittivity measurement in multi-layered dielectric structures using complementary split-ring resonators," IEEE Sensors Journal, Vol. 14, No. 3, March 2014.
doi:10.1109/JSEN.2013.2285918

5. Clarke, R. N. and C. B. Rosenberg, "Fabry-Perot and open resonators at microwave and millimeter wave frequencies, 2-300 GHz," Journal of Physics E: Scientific Instruments, Vol. 15, 1982.

6. Krupka, J., A. Cwikla, M. Mrozowski, R. N. Clarke, and M. E. Tobar, "High Q-factor microwave Fabry-Perot resonator with distributed Bragg reflectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 52, 2005.

7. Yao, Y., H. Cui, J. Wang, E. Li, and B. Tao, "Broadband measurement of complex permittivity by an open resonator at 20-40 GHz," International Conference on IEEE Communication Problem-Solving (ICCP), 2014.

8. Gui, Y. F., W. B. Dou, P. G. Su, and K. Yin, "Improvement of open resonator technique for dielectric measurement at millimeter wavelengths," IET Microw. Antennas Propag., Vol. 3, No. 7, 2009.
doi:10.1049/iet-map.2008.0179

9. Libich, J., P. Dvorak, P. Piksa, and S. Zvanovec, "Correction of thermal deviations in Fabry-Perot resonator based measurements of specific gases in millimeter wave bands," Radioengineering, Vol. 21, No. 1, 459, April 2012.

10. Hong, Y.-P., H. Koo, and M. J. Salter, "Measurement of high-permittivity dielectric characteristics at microwave and mm-wave frequencies," Conference on Precision Electromagnetic Measurements (CPEM 2016), July 2016.

11. Quan, W., D. J. Downing, and M. NurulAfsar, "A signal processing approach for recovery of precision high-Q dielectric resonance profile measurements," 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), July 2016.

12. Anatoli, D. and G. Spartak, "Open resonator technique for measuring multilayered dielectric plates," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2005.

13. Yu, P. K. and A. L. Cullen, "Measurement of permittivity by means of an open resonator," Proc. R. Soc. London: Ser. A., Vol. 380, 1982.

14. David, P., Microwave Engineering, 4th Ed., John Wiley & Sons Inc., 2012.

15. Cullen, A. L., "Millimeter-wave open-resonator techniques," International Journal of Infrared and Millimeter Waves, Vol. 10, Springer, 1983.

16. Andrey, K., K. Alexei, N. Elizaveta, O. Vitaly, and K. Dmitry, "Observation of an anomalous correlation between permittivity and tunability of a doped (Ba,Sr)TiO3 ferroelectric ceramic developed for microwave applications," Applied Physics Letters, Vol. 95, 012908, 2009.

17. Vendik, O. G. and S. P. Zubko, "Ferroelectric phase transition and maximum dielectric permittivity of displacement type ferroelectrics (BaxSr1-xTiO3)," Journal of Applied Physics, Vol. 88, 5343, 2000.
doi:10.1063/1.1317243

18. Tagantsev, A. K., V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, "Ferroelectric materials for microwave tunable applications," Journal of Electroceramics, Vol. 11, 2003.