Vol. 52
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-12-27
Electromagnetic Levitation of Nonmagnetic Disc
By
Progress In Electromagnetics Research M, Vol. 52, 201-213, 2016
Abstract
The paper presents analytical solution of nonmagnetic and conductive disc levitation problem. The alternating magnetic field exerts eddy currents in conductive disc and levitation force, subsequently. The electromagnetic field and eddy currents distributions are determined. The force acting upon nonmagnetic disc (Lorentz, Maxwell, coenergy methods) and power losses (Joule volume integral, Poynting surface integral methods) are evaluated. For example, levitation force and power losses versus field frequency are figured out. Additionally, an optimization task for power losses at constant disc volume is solved.
Citation
Dariusz Spalek , "Electromagnetic Levitation of Nonmagnetic Disc," Progress In Electromagnetics Research M, Vol. 52, 201-213, 2016.
doi:10.2528/PIERM16100801
http://www.jpier.org/PIERM/pier.php?paper=16100801
References

1. Binns, K. J., P. J. Lawrenson, and C. W. Trowbridge, The Analytical and Numerical Solution of Electric and Magnetic Fields, John Wiley & Sons, 1992.

2. Boughrara, K. and R. Ibtiouen, "Magnetic field distribution and levitation force calculation in htsc-pmg maglev vehicles," Progress In Electromagnetics Research B, Vol. 55, 63-86, 2013.
doi:10.2528/PIERB13082705

3. Guru, B. S. and H. R. Hiziroglu, Electromagnetic Field Theory Fundamentals, University Press, Cambridge, 2004.
doi:10.1017/CBO9781139165297

4. Fromm, E. and H. Jehn, "Electromagnetic forces and power absorption in levitation melting," British Journal of Applied Physics, Vol. 16, 653-663, 1965.
doi:10.1088/0508-3443/16/5/308

5. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 2015.

6. Grzesik, B., W. Burlikowski, J. Junak, and Z. Kaczmarczyk, "Levitation system for melting with class E inverter European," Conference on Power Electronics and Applications, 2.262-2.267, 1997.

7. Ohji, T., T. Shinkai, K. Amei, and M. Sakui, "Application of Lorentz force to a magnetic levitation system for a non-magnetic thin plate," Journal of Materials Processing Technology, Vol. 181, 40-43, 2007.
doi:10.1016/j.jmatprotec.2006.03.046

8. Okress, E. C., D. M. Wroughton, G. Comenetz, P. H. Brace, and J. C. R. Kelly, "Electromagnetic levitation of solid and molten metals," Journal of Applied Physics, Vol. 23, No. 5, 545-552, 1952.
doi:10.1063/1.1702249

9. Shameli, E., M. B. Khamesee, and J. P. Huissoon, "Real-time control of a magnetic levitation device based on instantaneous modeling of magnetic field," Mechatronics, Vol. 18, 536-544, 2008.
doi:10.1016/j.mechatronics.2008.05.009

10. Smythe, W. R., Static and Dynamic Electricity, McGraw-Hill Book Company, New York, 1950.

11. Spalek, D. and W. Burlikowski, "Field evaluation for electromagnetic torque components," IEE Proceedings Electric Power Applications, Vol. 144, No. 2, 85-94, 1997.
doi:10.1049/ip-epa:19970435

12. Spalek, D., "Electromagnetic torque components in synchronous salient-pole machine," COMPEL, Vol. 16, No. 3, 129-143, MCB University Press, 1997.
doi:10.1108/03321649710182878

13. Spalek, D., "Fast analytical model of induction motor for approaching rotor eccentricity," COMPEL, Vol. 18, No. 4, 570-586, MCB University Press, 1999.
doi:10.1108/03321649910296582

14. Spalek, D., "Analytical electromagnetic field and forces calculation for linear, cylindrical and spherical electromechanical converters," Bulletin of the Polish Academy of Sciences. Technical Sciences, Vol. 52, No. 3, 239-250, 2004.

15. Spalek, D., "Electromagnetic field forces and torques," Archives of Electrical Engineering, Vol. LIV, No. 3, 297-319, 2005.

16. Spalek, D., "Synchronous motors linear, cylindrical and spherical with permanent magnets or excited," Bulletin of the Polish Academy of Sciences. Technical Sciences, Vol. 55, No. 3, 299-311, 2007.

17. Spalek, D., "Theorem about electromagnetic force surface representation in anisotropic region," Journal of Technical Physics, Vol. XLVIII, No. 3-4, 135-145, 2007.

18. Spalek, D., "Spherical induction motor with anisotropic rotor - analytical solutions for electromagnetic field distribution, electromagnetic torque and power losses," International Compumag Society. Testing Electromagnetic Analysis Methods - Problem, No. 34, 2009, http://www.compumag.org/jsite/team.html.

19. Spalek, D., "Anisotropy component of electromagnetic force and torque," Bulletin of the Polish Academy of Sciences Technical Sciences, Vol. 58, No. 1, 107-117, 2010.
doi:10.2478/v10175-010-0011-9

20. Spalek, D., "Two theorems about Lorentz method for asymmetrical anisotropic regions," Bulletin of the Polish Academy of Sciences. Technical Sciences, Vol. 61, No. 2, 339-404, 2013.

21. Spalek, D., "Analytical solution of Helmholtz equation in anisotropic and nonhomogeneous region," Journal of Energy and Power Engineering, Vol. 8, No. 7, 1265-1271, David Publishing Company, New York, 2014.

22. Spalek, D., "Comments on electromagnetic force and torque surface representation," Journal of Basic and Applied Research International, Vol. 3, No. 4, 128-133, 2015.

23. Valle, R., F. Neves, R. de Andrade, Jr., and R. M. Stephan, "Electromagnetic levitation of a disc," IEEE Transactions on Education, Vol. 55, No. 2, 2012.
doi:10.1109/TE.2011.2167975