Vol. 64
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-12-08
Design of an UWB Antenna with Adjustable Rejection Bandwidth Using Novel Dual-T Square Resonator
By
Progress In Electromagnetics Research Letters, Vol. 64, 87-92, 2016
Abstract
A novel UWB antenna with adjustable rejection bandwidth is proposed and fabricated. The proposed antenna consists of a monopole and a novel dual-T square resonator. The results demonstrate that a wide rejection bandwidth from 10.4 to 11.5 GHz can be achieved, and the rejection bandwidth can be adjusted by transforming the dimensions of dual-T square resonator. Moreover, reflection coefficient curve with two poles at one rejected bandwidth is also obtained which is induced by the proposed novel square resonator. In addition, to explain the mechanism of adjustable rejection bandwidth, the analysis of parametric study and electric field distributions of the design are given. The total volume of the antenna is 27 mm×19 mm×1 mm. Compared to other recent works, a simpler structure, wider rejection bandwidth and more compact size are the key features of the proposed antenna. Owing to its adjustable bandwidth and simple structure, the proposed antenna can be used in UWB communications applications to suppress the radio-frequency interference.
Citation
Xue-Liang Min, Hou Zhang, Tao Zhong, and Qiang Chen, "Design of an UWB Antenna with Adjustable Rejection Bandwidth Using Novel Dual-T Square Resonator," Progress In Electromagnetics Research Letters, Vol. 64, 87-92, 2016.
doi:10.2528/PIERL16101501
References

1. Wang, J., Y. Yin, and X. Liu, "A novel compact planar ultra-wideband antenna with dual band-notched characteristics," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, No. 1, 48-55, 2015.
doi:10.1002/mmce.20822

2. Lin, Y.-F., J.-G. Liang, G.-C. Wu, Z.-Y. Xu, and X.-B. Niu, "A novel UWB antenna with dual band-notched characteristics," Frequenz, Vol. 69, 479-483, 2015.

3. Wang, Z. and C. Zhang, "A planar UWB antenna with triple-notched bands," Progress In Electromagnetics Research Letters, Vol. 52, 99-104, 2015.

4. Lin, C.-C., P. Jin, and R. W. Ziolkowski, "Single, dual and tri-band-notched ultrawideband (UWB) antennas using capacitively loaded loop (CLL) resonators," IEEE Transaction on Antennas and Propagation, Vol. 60, No. 1, 2012.
doi:10.1109/TAP.2011.2167947

5. Choi, H.-S., K. Choi, and H. Hwang, "Band-rejected UWB antenna based on two-pole band-stop filter," Microwave And Optical Technology Letters, Vol. 58, 406-409, 2016.
doi:10.1002/mop.29577

6. Chuang, C.-T., T.-J. Lin, and S.-J. Chung, "A band-notched UWB monopole antenna with high notch-band-edge selectivity," IEEE Transaction on Antennas and Propagation, Vol. 60, 4492-4498, 2012.
doi:10.1109/TAP.2012.2207327

7. Wang, P., G.-J. Wen, Y.-J. Huang, and Y.-H. Sun, "Compact meander T-shaped monopole antenna for dual-band WLAN applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, 67-73, 2013.
doi:10.1002/mmce.20652

8. Choi, H.-S., T.-W. Kim, H.-Y. Hwang, and K. Choi, "An UWB antenna design with adjustable second rejection band using a SIR," IEEE Transactions on Magnetics, Vol. 50, 479-483, 2014.
doi:10.1109/TMAG.2013.2274174

9. Mishra, G. and S. Sahu, "Compact circular patch UWB antenna with WLAN band notch characteristics," Microwave And Optical Technology Letters, Vol. 58, 1068-1073, 2016.
doi:10.1002/mop.29727

10. Li, C.-M. and L.-H. Ye, "Improved dual band-notched UWB slot antenna with controllable notched bandwidths," Progress In Electromagnetics Research, Vol. 115, 477-493, 2011.
doi:10.2528/PIER11030304

11. Xu, J., D.-Y. Shen, J.-F. Zheng, X.-P. Zhang, and K. Wu, "A novel miniaturized UWB antenna with four band-notches," Microwave and Optical Technology Letters, Vol. 55, 1202-1206, 2013.
doi:10.1002/mop.27546

12. Ghatak, R., B. Biswas, A. Karmakar, and D. R. Poddar, "A circular fractal UWB antenna based on descartes circle theorem with band rejection capability," Progress In Electromagnetics Research C, Vol. 37, 235-248, 2013.
doi:10.2528/PIERC13011607

13. Wu, C.-M. and Y.-H. Liu, "An ultra-wideband twin-patch monopole antenna with band-rejection characteristic," Progress In Electromagnetics Research Letters, Vol. 53, 77-82, 2015.
doi:10.2528/PIERL15030107

14. Ojaroudi, N., N. Ghadimi, and Y. Ojaroudi, "Compact multi-resonance monopole antenna with dual band-stop property for UWB wireless communications," Wireless Pers. Commun., Vol. 81, 563-579, 2015.
doi:10.1007/s11277-014-2145-9

15. Li, T., C. Zhu, X. Cao, and J. Gao, "Bandwidth enhancement of compact monopole antenna with triple band rejections," Electronics Letters, Vol. 52, 8-10, 2016.
doi:10.1049/el.2015.2301

16. Rajeshkumar, V. and S. Raghavan, "Bandwidth enhanced compact fractal antenna for UWB applications with 5-6 GHz band rejection," Microwave And Optical Technology Letters, Vol. 57, 607-613, 2015.
doi:10.1002/mop.28913