Vol. 65
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-12-18
Compact CPW-Fed Multiband Antenna for TD-LTE/WLAN/WiMAX Applications
By
Progress In Electromagnetics Research Letters, Vol. 65, 9-14, 2017
Abstract
A compact coplanar waveguide fed multiband antenna is proposed and investigated. The proposed antenna consists of a rectangular radiating patch and dual meander strips with a defected ground plane. The size of the fabricated prototype is 28.3 × 24 × 1.59 mm3. The proposed antenna radiates at three different resonant modes, which cover 2.29-2.63 GHz, 3.26-3.96 GHz, and 4.97-6.10 GHz. The proposed antenna can be used for TD-LTE 2300/2500 (2.305-2.4 GHz), WLAN (2.4-2.4835 GHz and 5.15-5.875 GHz) and WiMAX (2.3-2.4 GHz and 3.3-3.7 GHz) applications. The proposed antenna exhibits an omnidirectional radiation pattern in the H-plane and a dipole-like radiation pattern in the E-plane. The measured peak gains are 2.64/4.48/6.08 dBi at the 2.4/3.5/5.5 GHz operating frequency bands, respectively.
Citation
Gui Liu, Mengli Fang, Ruixing Zhi, Jing Bai, and Zhe Zeng, "Compact CPW-Fed Multiband Antenna for TD-LTE/WLAN/WiMAX Applications," Progress In Electromagnetics Research Letters, Vol. 65, 9-14, 2017.
doi:10.2528/PIERL16102203
References

1. Dang, L., Z. Lei, Y. Xie, G. Ning, and J. Fan, "A compact microstrip slot triple-band antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1178-1181, 2010.
doi:10.1109/LAWP.2010.2098433

2. Liu, P., Y. Zou, B. Xie, X. Liu, and B. Sun, "Compact CPW-fed tri-band printed antenna with meandering split-ring slot for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1242-1244, 2012.
doi:10.1109/LAWP.2012.2225402

3. Liu, H., C. Ku, and C. Yang, "Novel CPW-fed planar monopole antenna for WiMAX/WLAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 9, 240-243, 2010.
doi:10.1109/LAWP.2010.2044860

4. Mehdipour, A., A. Sebak, C. Trueman, and T. Denidni, "Compact multiband planar antenna for 2.4/3.5/5.2/5.8-GHz wireless applications," IEEE Antennas Wireless Propag. Lett., Vol. 11, 144-147, 2012.
doi:10.1109/LAWP.2012.2185915

5. Pei, J., A. Wang, S. Gao, and W. Leng, "Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 10, 298-301, 2011.
doi:10.1109/LAWP.2011.2140090

6. Liu, W., C. Wu, and Y. Dai, "Design of triple-frequency microstrip-fed monopole antenna using defected ground structure," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2457-2463, 2011.
doi:10.1109/TAP.2011.2152315

7. Xu, P., Z.-H. Yan, and C. Wang, "Multi-band modified fork-shaped monopole antenna with dual L-shaped parasitic plane," Electron. Lett., Vol. 47, No. 6, 364-365, 2011.
doi:10.1049/el.2010.3280

8. Herraiz-Martınez, F., G. Zamora, F. Paredes, F. Martın, and J. Bonache, "Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1528-1531, 2012.

9. Li, D. and J.-F. Mao, "Multiband multimode arched bow-shaped fractal helix antenna," Progress In Electromagnetics Research, Vol. 141, 47-78, 2013.
doi:10.2528/PIER13050903