Vol. 66
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-02-01
Frequency-Tunable Phase Inverter Based on Slot-Line Resonator
By
Progress In Electromagnetics Research Letters, Vol. 66, 9-14, 2017
Abstract
This paper describes a frequency-tunable phase inverter based on a slot-line resonator for the first time. The control circuit is designed and located on the defected ground. None of dc block capacitors are needed in the microstrip line. A wide tuning frequency range is accomplished by the use of the slot-line resonator with two varactors and a single control voltage. A 180-degree phase inverter is achieved by means of reversing electric field with two metallic via holes connecting the microstrip and ground plane. The graphic method is used to estimate the operation frequency. For verification, a frequency-tunable phase inverter is fabricated and measured. The measured results show a wide tuning frequency range from 1.1 GHz to 1.75 GHz with better than 20-dB return loss. The measured results are in good agreement with the simulated ones.
Citation
Zhenheng Liao, and Xu-Chun Zhang, "Frequency-Tunable Phase Inverter Based on Slot-Line Resonator," Progress In Electromagnetics Research Letters, Vol. 66, 9-14, 2017.
doi:10.2528/PIERL16110403
References

1. Tae, H. S., K. S. Oh, H. L. Lee, W. I. Son, and J. W. Yu, "Reconfigurable 1 : 4 power divider with switched impedance matching circuits," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 2, 64-66, Feb. 2012.
doi:10.1109/LMWC.2011.2181830

2. Basaran, S. C. and K. Sertel, "Dual-band frequency reconfigurable monopole antenna for WLAN applications," Microwave and Optical Technology Letters, Vol. 57, No. 1, 55-58, Jan. 2015.
doi:10.1002/mop.28779

3. Lourandakis, E., M. Schmid, S. Seitz, and R. Weigel, "Reduced size frequency agile microwave circuits using ferroelectric thin-film varactors," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, 3093-3099, Dec. 2008.
doi:10.1109/TMTT.2008.2006807

4. Draskovic, D. and D. Budimir, "Varactor tuned dual-band wilkinson power divider," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2009.

5. Shen, X. C., Y. L. Wu, S. Y. Zhou, and Y. N. Liu, "A novel coupled-line tunable wilkinson power divider with perfect port match and isolation in wide frequency tuning range," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 6, 917-925, Jun. 2016.
doi:10.1109/TCPMT.2016.2565601

6. Mo, T. T., Q. Xue, and C. H. Chan, "A broadband compact microstrip rat-race hybrid using a novel CPW inverter," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 1, 161-167, Jan. 2007.
doi:10.1109/TMTT.2006.888938

7. Zhang, X. C., T. Y. Wang, and Y. B. Xiang, "Wideband three-way out-of-phase microstrip power divider," Electronics Letters, Vol. 51, No. 5, 404-406, 2015.
doi:10.1049/el.2014.3915

8. Wong, K. W., L. Chiu, and Q. Xue, "Wideband parallel-strip bandpass filter using phase inverter," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 8, 503-505, Aug. 2008.
doi:10.1109/LMWC.2008.2001001

9. Chiu, L. and Q. Xue, "Wideband parallel-strip 90degree hybrid coupler with swap," Electronics Letters, Vol. 44, No. 11, 687-688, 2008.
doi:10.1049/el:20080975

10. Yang, N., C. Caloz, and K. Wu, "Fixed-beam frequency-tunable phase-reversal coplanar stripline antenna array," IEEE Microw. Wireless Compon. Lett., Vol. 57, No. 3, 671-681, Mar. 2009.

11. Kim, J. H., D.W. Woo, G. Y. Jo, and W. S. Park, "Microstrip phase inverter using slotted ground," Antenna and Propagation Society International Symposium (APSURS), 1-4, 2010.

12. Zhang, X. C., C. H. Liang, and J. W. Xie, "Microstrip phase inverter using Interdigital Strip Lines And Defected Ground," Progress In Electromagnetics Research Letters, Vol. 29, 167-173, 2012.

13. Lin, F., Q. X. Chu, Z. Gong, and Z. Lin, "Compact broadband Gysel power divider with arbitrary power-dividing ratio using microstrip slot line phase inverter," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 5, 1226-1234, May 2012.
doi:10.1109/TMTT.2012.2187067