Vol. 54
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-08
Efficient Bayesian Multifidelity Approach in Metamodeling of an Electromagnetic Simulator Response
By
Progress In Electromagnetics Research M, Vol. 54, 47-54, 2017
Abstract
Several computer codes with varying accuracy from rigorous full-wave methods (highfidelity models) to less accurate Transmission Line (TL) approaches (low-fidelity model) have been proposed to solve EMC problems of interference between parasitic waves and wired communication systems. For solving engineering tasks, with a limited computational budget, we need to build surrogate models of high-fidelity (HF) computer codes. However, one of their main limitations is their expensive computational time. Rather than using only the computationally costly HF simulations, we apply another type of surrogate models, called Multifidelity (MF) metamodel which efficiently combines, within a Bayesian framework, high and low-fidelity (LF) evaluations to speed up the surrogate model building. The numerical results of combination of an expensive EMC simulator and a cheap TL code to solve a plane wave illumination problem, show that, compared to Kriging, a reliable Bayesian MF metamodel of equivalent or higher predictivity can be obtained within less simulation time.
Citation
Tarek Bdour Christopher Guiffaut Alain Reineix , "Efficient Bayesian Multifidelity Approach in Metamodeling of an Electromagnetic Simulator Response," Progress In Electromagnetics Research M, Vol. 54, 47-54, 2017.
doi:10.2528/PIERM16120103
http://www.jpier.org/PIERM/pier.php?paper=16120103
References

1. Tesche, F., M. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, John Wiley & Sons, New York, 1997.

2. Burke, G. J. and A. J. Poggio, "Numerical Electromagnetic Code (NEC)-method of moments," Technical Report, Naval Ocean Systems Center, San Diego, 1981.

3. Bandler, J., R. Biernacki, S. Chen, P. Grobelny, and R. Hemmers, "Space mapping technique for electromagnetic optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 2536-2544, Dec. 1994.
doi:10.1109/22.339794

4. Koziel, S. and J. W. Bandler, "Space-mapping modelling of microwave devices using multifidelity electromagnetic simulations," IET Microwaves, Antennas & Propagation, Vol. 5, No. 3, 324-333, Feb. 2011.
doi:10.1049/iet-map.2010.0058

5. Krige, D. G., "A statistical approach to some mine valuations problems at the Witwatersrand," Journal of the Chemical, Metallurgical and Mining Society of South Africa, Vol. 52, 119-139, 1951.

6. Lophaven, S. N., H. B. Nielsen, and J. S√łndergaard, "Aspects of the Matlab Toolbox DACE,", Report IMM-REP-2002-13, Informatics and Mathematical Modelling, DTU, 44 pages, 2002.

7. Kennedy, M. C. and A. O'Hagan, "Predicting the output of a complex computer code when fast approximations are available," Biometrika, Vol. 87, No. 1, 1-13, 2000.
doi:10.1093/biomet/87.1.1

8. Forrester, A. I. J., A. Sobester, and A. J. Keane, "Multifidelity optimization via surrogate modelling," Journal of Mechanical Engineering Science, Vol. 463, 2115-2137, 2007.

9. Bradley, P. J., "A multifidelity based adaptive sampling optimisation approach for the rapid design of double-negative metamaterials," Progress In Electromagnetics Research B, Vol. 55, 87-114, 2013.
doi:10.2528/PIERB13071003

10. Le Gratiet, L., "Bayesian analysis of hierarchical multifidelity codes," SIAM/ASA J. Uncertainty Quantification, Vol. 1, No. 1, 244-269, 2013.
doi:10.1137/120884122

11. Lugrin, G., N. Mora, F. Rachidi, and S. Tkachenko, "Electromagnetic field coupling to transmission lines: A model for the risers," 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 174-176, Shenzhen, 2016.
doi:10.1109/APEMC.2016.7523000

12. Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn, "Design and analysis of computer experiments," Statistical Science, Vol. 4, No. 4, 409-435, 1989.
doi:10.1214/ss/1177012413

13. Jacobs, J. P., S. Koziel, and S. Ogurtsov, "Computationally efficient multi-fidelity Bayesian support vector regression modeling of planar antenna input characteristics," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 980-984, Feb. 2013.
doi:10.1109/TAP.2012.2220513