Vol. 73
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-03-17
Underwater Electromagnetic Holography Imaging Techniques for Shallow Water Mediums
By
Progress In Electromagnetics Research B, Vol. 73, 95-116, 2017
Abstract
We propose an approach to characterize the AC underwater radiation produced by a ship over a shallow water medium using dipole sources distributed over an interior surface to the ship. The proposed approach relies in the accurate and efficient representation of dipole sources over the shallow water medium that characterize the behavior of the electric or magnetic field. The approach is reduced to the solution of the resultant matrix system from the dipole representation. These systems are ill-posed, i.e., if the matrix systems are not solved by special regularization methods, the resultant solution will amplify the measurement noise. The regularization method applied is the least squares QR iterations combined with a new stopping rule that uses a numerical estimate of the measurement noise. Numerically generated data is used to study the validity of the different dipole representations. Finally we validate our methodology using magnetic measurements that result from degaussing coils of a mid-size vessel.
Citation
Nicolas P. Valdivia, Earl G. Williams, and Hatim F. Alqadah, "Underwater Electromagnetic Holography Imaging Techniques for Shallow Water Mediums," Progress In Electromagnetics Research B, Vol. 73, 95-116, 2017.
doi:10.2528/PIERB16121406
References

1. Holmes, J. J., Modeling a Ship's Ferromagnetic Signatures. Synthesis Lectures on Computational Electromagnetics, 1st Ed., 16, Morgan & Claypool, 2007.

2. Holmes, J. J., Exploitation of A Ship's Magnetic Field Signatures. Synthesis Lectures on Computational Electromagnetics, 1st Ed., 9, Morgan & Claypool, 2006.

3. Bradley Nelson, J., T. C. Richards, M. Bisan, C. Greene, R. Dewey, F. Ludwar, K. Hofener, J. Rhebergen, and F. de Wolf, "Rimpasse 2011 electromagnetic trials quick-look report," Technical Report, Defence R&D Canada-Atlantic, November 2011.        Google Scholar

4. Stratton, J. A. and L. J. Chu, "Diffraction theory of electromagnetic waves," Physical Review, Vol. 56, 99-107, 1939.
doi:10.1103/PhysRev.56.99        Google Scholar

5. Stratton, J. A., "Electromagnetic Theory," IEEE Press Series on Electromagnetic Wave Theory, John Wiley and Sons, 1941.        Google Scholar

6. Guo, Y., H. W. Ko, and D. M. White, "3-D localization of buried objects by nearfield electromagnetic holography," Geophysics, Vol. 63, No. 3, 880-889, 1998.
doi:10.1190/1.1444398        Google Scholar

7. Harms, P., J. Maloney, M. P. Kesler, E. J. Kuster, and G. S. Smith, "A system for unobstrusive measurement of surface currents," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 2, 174-184, 2001.
doi:10.1109/8.914266        Google Scholar

8. Morgan, M. A., "Electromagnetic holography on cylindrical surfaces using k-space transformations," Progress In Electromagnetics Research, Vol. 42, 303-337, 2003.
doi:10.2528/PIER03020302        Google Scholar

9. Williams, E. G. and N. Valdivia, "Near-field electromagnetic holography in conductive media," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1181-1192, 2010.
doi:10.1109/TAP.2010.2042028        Google Scholar

10. Guler, M. G. and E. B. Joy, "High resolution spherical microwave holography," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 5, 464-472, 1995.
doi:10.1109/8.384190        Google Scholar

11. Valdivia, N. and E. G. Williams, "The reconstruction of surface tangential components of the electromagnetic field from near-field measurements," Inverse Problems, Vol. 23, 785-798, March 2007.
doi:10.1088/0266-5611/23/2/018        Google Scholar

12. Valdivia, N. and E. G. Williams, "Study of the comparison of the methods of equivalent sources and boundary element methods for near-field acoustic holography," Journal of the Acoustical Society of America, Vol. 120, No. 6, 3694-3705, December 2006.
doi:10.1121/1.2359284        Google Scholar

13. Alqadah, H. F., N. P. Valdivia, and E. G. Williams, "A super-resolving near-field electromagnetic holographic method," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3679-3692, 2014.
doi:10.1109/TAP.2014.2321149        Google Scholar

14. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93 of Applied Mathematical Sciences, 3rd Ed., Springer, 2013.
doi:10.1007/978-1-4614-4942-3

15. Paige, C. C. and M. A. Saunders, "LSQR: An algorithm for sparse linear equations and sparse least squares," ACM Transactions on Mathematical Software, Vol. 8, No. 1, 43-71, 1982.
doi:10.1145/355984.355989        Google Scholar

16. Hanke, M., Conjugate Gradient Methods for Ill-posed Problems, Kluwer Academic Publishers, 1995.

17. Hansen, P. C., Rank-deficient and Discrete Ill-posed Problems, SIAM, 1998.
doi:10.1137/1.9780898719697

18. Hanke, M. and T. Raus, "A general heuristic for choosing the regularization parameter in ill-posed problems," SIAM Journal on Scientific Computing, Vol. 17, No. 4, 956-972, 1996.
doi:10.1137/0917062        Google Scholar

19. Hansen, P. C. and D. P. O’Leary, "The use of the L-curve in the regularization of discrete ill-posed problems," SIAM Journal on Scientific Computation, Vol. 14, No. 6, 341-373, 1993.
doi:10.1137/0914086        Google Scholar

20. Valdivia, N., E. G. Williams, P. C. Herdic, and B. Houston, "Surface decomposition method for near-field acoustic holography," Journal of the Acoustical Society of America, Vol. 132, No. 1, 186-196, 2012.
doi:10.1121/1.4728204        Google Scholar

21. Le Dorze, F., J. P. Bongiraud, J. L. Coulomb, P. Labie, and X. Brunotte, "Modeling of degaussing coils effects in ships by the method of reduced scalar potential jump," IEEE Transactions on Magnetics, Vol. 34, No. 5, 2477-2480, September 1998.
doi:10.1109/20.717570        Google Scholar

22. Nguyen, T. S., J. M. Guichon, O. Chadebec, P. Labie, and J. L. Coulomb, "Ship magnetic anomaly computation with integral equation and fast multipole method," IEEE Transactions on Magnetics, Vol. 47, No. 5, 1414-1417, May 2011.
doi:10.1109/TMAG.2010.2091626        Google Scholar

23. Nguyen, T. T., G. Meunier, J. M. Guichon, and T. S. Nguyen, "An integral formulation for the computation of 3-D eddy current using facet elements," IEEE Transactions on Magnetics, Vol. 50, No. 2, 7013504-7013508, 2014.
doi:10.1109/TMAG.2013.2282957        Google Scholar

24. Sommerfeld, A., Partial Differential Equations in Physics, Volume VI of Lectures on Theoretical Physics, Academic Press, 1949.

25. Arutaki, A. and J. Chiba, "Communication in a three-layered conducting media with a vertical magnetic dipole," IEEE Transactions on Antennas and Propagation, Vol. 28, No. 4, 551-556, 1980.
doi:10.1109/TAP.1980.1142378        Google Scholar