1. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiell, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, No. 1, 80, 2016.
doi:10.1021/acs.nanolett.5b02901 Google Scholar
2. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 2016.
doi:10.1038/srep20474 Google Scholar
3. Ai, X., Y. Tian, Z. Cui, Y. Han, and X.-W. Shi, "A dispersive conformal FDTD technique for accurate modeling electromagnetic scattering of THz waves by inhomogeneous plasma cylinder array," Progress In Electromagnetics Research, Vol. 142, 353-368, 2013.
doi:10.2528/PIER13052409 Google Scholar
4. Yuan, C.-X., Z.-X. Zhou, J. W. Zhang, X.-L. Xiang, F. Yue, and H.-G. Sun, "FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 39, No. 7, 1577-1584, 2011.
doi:10.1109/TPS.2011.2151207 Google Scholar
5. Tian, Y., Y. Han, Y. Ling, and X. Ai, "Propagation of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency," Physics of Plasmas, Vol. 21, No. 2, 023301, (1994-present), 2014. Google Scholar
6. Zheng, L., Q. Zhao, S. Liu, X. Xing, and Y. Chen, "Theoretical and experimental studies of terahertz 219 wave propagation in unmagnetized plasma," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 35, No. 2, 187-197, 2014.
doi:10.1007/s10762-013-0035-y Google Scholar
7. Li, J., Y. Pi, and X. Yang, "A conception on the terahertz communication system for plasma sheath penetration," Wireless Communications and Mobile Computing, Vol. 14, No. 13, 1252-1258, 2014.
doi:10.1002/wcm.2225 Google Scholar
8. Starkey, R. P., "Hypersonic vehicle telemetry blackout analysis," Journal of Spacecraft and Rockets, Vol. 52, No. 2, 426-438, 2015.
doi:10.2514/1.A32051 Google Scholar
9. Meyer, J. W., "System and method for reducing plasma induced communication disruption utilizing electrophilic injectant and sharp reentry vehicle nose shaping,", US Patent 7237752, 2007. Google Scholar
10. Chen, J., K. Yuan, L. Shen, X. Deng, L. Hong, and M. Yao, "Studies of terahertz wave propagation in realistic reentry plasma sheath," Progress In Electromagnetics Research, Vol. 157, 21-29, 2016.
doi:10.2528/PIER16061202 Google Scholar
11. Jung, M., H. Kihara, K. I. Abe, and Y. Takahashi, "Numerical analysis on the effect of angle of attack on evaluating radio-frequency blackout in atmospheric reentry," Journal-Korean Physical Society, Vol. 68, No. 11, 1295-1306, 2016.
doi:10.3938/jkps.68.1295 Google Scholar
12. Kundrapu, M., J. Loverich, K. Beckwith, and P. Stoltz, "Electromagnetic wave propagation in the plasma layer of a reentry vehicle," IEEE International Conference on Plasma Sciences, 1-4, 2014. Google Scholar
13. Kundrapu, M., J. Loverich, K. Beckwith, P. Stoltz, A. Shashurin, and M. Keidar, "Modeling radio communication blackout and blackout mitigation in hypersonic vehicles," Journal of Spacecraft and Rockets, Vol. 52, No. 3, 853-862, 2015.
doi:10.2514/1.A33122 Google Scholar
14. Gupta, R. N., J. M. Yos, R. A. Thompson, and K.-P. Lee, "A review of reaction rates and 241 thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K," NASA STI/Recon Technical Report N, Tech. Rep., Aug. 1990. Google Scholar
15. Grantham, W. L., "Flight results of a 25000-foot-per-second reentry experiment using microwave reflectometers to measure plasma electron density and standoff distance,", Tech. Rep., NASA TN D-6062, Washington, D. C., Dec. 1970. Google Scholar
16. Jones, Jr., W. L. and A. E. Cross, "Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second,", Tech. Rep., NASA TN D-6617, Washington, D. C., Feb. 1972. Google Scholar
17. Lankford, D. W., "A study of electron collision frequency in air mixtures and turbulent boundary,", Tech. Rep., DTIC Document AFWL-TR-72-71, Oct. 1972. Google Scholar
18. Reddy, D. S. K. and K. Sinha, "Hypersonic turbulent flow simulation of Fire II reentry vehicle afterbody," Journal of Spacecraft and Rockets, Vol. 46, No. 4, 745-757, 2009.
doi:10.2514/1.41380 Google Scholar
19. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace Electronic Systems, Vol. 7, No. 5, 879-894, 1971.
doi:10.1109/TAES.1971.310328 Google Scholar
20. Mehra, N., R. K. Singh, and S. C. Bera, "Mitigation of communication blackout during re-entry using static magnetic field," Progress In Electromagnetics Research B, Vol. 63, 161-172, 2015.
doi:10.2528/PIERB15070107 Google Scholar
21. Zheng, L., Q. Zhao, S. Liu, P. Ma, C. Huang, Y. Tang, X. Chen, X. Xing, C. Zhang, and X. Luo, "Theoretical and experimental studies of 35 GHz and 96 GHz electromagnetic wave propagation in plasma," Progress In Electromagnetics Research M, Vol. 24, 179-192, 2012.
doi:10.2528/PIERM12030709 Google Scholar
22. Jastrow, C., S. Priebe, B. Spitschan, J.-M. Hartmann, M. Jacob, T. Kurner, T. Schrader, and T. Kleine-Ostmann, "Wireless digital data transmission at 300 GHz," Electronics Letters, Vol. 46, No. 9, 661-663, 2010.
doi:10.1049/el.2010.3509 Google Scholar