1. Kirschvink, J. L., A. Kobayashi-Kirschvink, and B. J. WoodfordKirschvink, J. L., A. Kobayashi-Kirschvink, B. J. Woodford, "Magnetite biomineralization in the human brain," Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, No. 16, 7683-7687, 1992.
doi:10.1073/pnas.89.16.7683 Google Scholar
2. Sant’Ovaia, H., G. Marques, A. Santos, C. Gomes, and A. Rocha, "Magnetic susceptibility and isothermal remanent magnetization in human tissues: A study case," Biometals, Vol. 28, 951-958, 2015.
doi:10.1007/s10534-015-9879-z Google Scholar
3. Collingwood, J. F. and N. D. Telling, "Iron oxides in the human brain," Iron Oxides: From Nature to Applications, Faivre D. (Ed.), 143–176, Wiley-VCH Verlag GmbH & Co. KgaA, 2016. Google Scholar
4. Stormer, F. C., "Magnetite in dura and pia mater in the brain. A shield against electromagnetic fields?," Medical Hypotheses, Vol. 82, 122-123, 2014. Google Scholar
5. Maher, B. A., I. A. M. Ahmed, V. Karloukovski, D. A. MacLaren, P. G. Foulds, D. Allsop, D. M. A. Mann, R. Torres-Jardon, and L. C. Calderon-Garcid, "Magnetite pollution nanoparticles in the human brain," Proceedings of the National Academy of Sciences of the United States of America, Vol. 113, No. 39, 10797-10801, Sep. 2016.
doi:10.1073/pnas.1605941113 Google Scholar
6. Kumar, P., M. Bulk, A. Webb, L. van der Weerd, T. H. Oosterkamp, M. Huber, and L. Bossoni, "A novel approach to quantify different iron forms in ex-vivo human brain tissue," Scientific Reports, Vol. 6, 38916, 2016.
doi:10.1038/srep38916 Google Scholar
7. Kirschvink, J. L., "Microwave absorption by magnetite: A possible mechanism for coupling nonthermal levels of radiation to biological systems," Bioelectromagnetics, Vol. 17, 187-194, 1996.
doi:10.1002/(SICI)1521-186X(1996)17:3<187::AID-BEM4>3.0.CO;2-# Google Scholar
8. Cranfield, C. G., H. G. Wieser, J. Al. Maddan, and J. Dobson, "Preliminary evaluation of nanoscale biogenic magnetite-based ferromagnetic transduction mechanisms for mobile phone bioeffects," IEEE Transactions on NanoBioscience, Apr. 2003. Google Scholar
9. Cranfield, C. G., H. G. Wieser, and J. Dobson, "Exposure of magnetic bacteria to simulated mobile phone-type RF radiation has no impact on mortality," IEEE Transactions on NanoBioscience, Vol. 2, No. 3, 146-149, 2003.
doi:10.1109/TNB.2003.816227 Google Scholar
10. Engels, S., N.-L. Schneider, N. Lefeldt, C. M. Hein, M. Zapka, A. Michalik, D. Elbers, A. Kittel, P. J. Hore, and H. Mouritsen, "Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird," Nature, Vol. 509, 353, May 15, 2014. Google Scholar
11. Milham, S., "Most cancer in firefighters is due to radio-frequency radiation exposure not inhaled carcinogens," Medical Hypotheses, Vol. 73, 788-789, 2009.
doi:10.1016/j.mehy.2009.04.020 Google Scholar
12. Kuster, N. and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz," IEEE Transactions on Vehicular Technology, Vol. 41, No. 1, 17-23, 1992.
doi:10.1109/25.120141 Google Scholar
13. Rubtsova, N., S. Perov, O. Belaya, N. Kuster, and Q. Balzano, "Near field radiofrequency electromagnetic exposure assessment," Electromagnetic Biology and Medicine, Vol. 34, No. 3, 180-182, 2015.
doi:10.3109/15368378.2015.1076444 Google Scholar
14. Durney, C. H., H. Massoudi, and M. F. Lskander (eds.), Radiofrequency Radiation Dosimetry Handbook, 4th Ed., Armstrong Laboratory (AFMC), Occupational and Environment Directorate, Radiofrequency Radiation Division, Brooks Air Force Base, 1986.
15. Brem, F., L. Tiefenauer, A. Fink, J. Dobson, and A. M. Hirt, "A mixture of ferritin and magnetite nanoparticles mimics the magnetic properties of human brain tissue," Physical Review B, Vol. 73, 224427, 2006.
doi:10.1103/PhysRevB.73.224427 Google Scholar
16. Liu, X. L., H. M. Fan, J. B. Yi, Y. Yang, E. S. G. Choo, J. M. Xue, D. D. Fana, and J. Ding, "Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents," Journal of Materials Chemistry, Vol. 22, 8235-8244, 2012.
doi:10.1039/c2jm30472d Google Scholar
17. Cvetkovic, M., D. Poljak, and A. Hirata, "The electromagnetic-thermal dosimetry for the homogeneous human brain model," Engineering Analysis with Boundary Elements, Vol. 63, 61-73, 2016.
doi:10.1016/j.enganabound.2015.11.002 Google Scholar
18. Laakso, I., R. Morimoto, A. Hirata, and T. Onishi, "Computational dosimetry of the human head exposed to near-field microwaves using measured blood flow," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 739-746, 2017.
doi:10.1109/TEMC.2016.2633326 Google Scholar
19. International Commission on Non-Ionizing Radiation Protection (ICNIRP) "Guidelines for limiting exposure to time varying electric, magnetic, and electromagnetic fields," Health Physics, Vol. 74, 494-522, 1998. Google Scholar
20. International Electrotechnical Commission (IEC) "Procedure to measure the specific absorption rate (SAR) for hand-held mobile wireless devices in the frequency range of 300 MHz to 3 GHz," IEC62209, Geneva, Switzerland, 2001. Google Scholar
21. International Electrotechnical Commission (IEC) "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices — human models, instrumentation, and procedures — Part 2: Procedure to determine the specific absorption rate (SAR) in the head and body for 30 MHz to 6 GHz handheld and bodymounted devices used in close proximity to the body," TC/SC106/90/NP, Geneva, Switzerland, 2005. Google Scholar
22. Racuciu, M., D. E. Creanga, A. Airinei, and V. Badescu, "Synthesis method influence on water based magnetic fluid properties," J. Optoelectr. Adv. Mat., Vol. 10, No. 3, 635-638, Mar. 2008. Google Scholar
23. Giere, R., "Magnetite in the human body: Biogenic vs. anthropogenic," Proceedings of the National Academy of Sciences of the United States of America, Vol. 113, No. 43, 11986-11987, Oct. 2016.
doi:10.1073/pnas.1613349113 Google Scholar
24. Strbak, O., P. Kopcansky, M. Timko, and I. Frollo, "Single biogenic magnetite nanoparticle physical characteristics — A biological impact study," IEEE Transactions on Magnetics, Vol. 49, No. 1, 457-462, Jan. 2013.
doi:10.1109/TMAG.2012.2223201 Google Scholar
25. Strbak, O., P. Kopcansky, M. Timko, and I. Frollo, "Correction to: Single biogenic magnetite nanoparticle physical characteristics. A biological impact study," IEEE Transactions on Magnetics, Vol. 49, No. 9, 1-3, Sept. 2013.
doi:10.1109/TMAG.2013.2258935 Google Scholar
26. Marin, C. N., I. Malaescu, and P. C. Fannin, "Theoretical evaluation of the heating rate of ferrofluids," Journal of Thermal Analysis and Calorimetry, Vol. 119, No. 2, 1199-1203, Feb. 2015.
doi:10.1007/s10973-014-4224-2 Google Scholar
27. Fannin, P. C., I. Malaescu, C. N. Marin, and N. Stefu, "Microwave propagation parameters in magnetic fluids," European Physics Journal, Vol. E 29, 299-303, 2009. Google Scholar
28. Malaescu, I., C. N. Marin, P. C. Fannin, N. Stefu, A. Savici, and D. Malaescu, "Comparative study of the microwave propagation parameters of some magnetic fluids in the presence of polarizing field," American Institute of Physics Conference Proceedings, Vol. 1387, 208, 2011. Google Scholar
29. Yun, H., X. Liu, T. Paik, D. Palanisamy, J. Kim, W. D. Vogel, A. J. Viescas, J. Chen, G. C. Papaefthymiou, J. M. Kikkawa, M. G. Allen, and C. B. Murray, "Size- and compositiondependent radio frequency magnetic permeability of iron oxide nanocrystals," American Chemical Society Nano, Vol. 8, No. 12, 12323-12337, 2014. Google Scholar
30. Malaescu, I., C. N. Marin, M. Bunoiu, P. C. Fannin, N. Stefu, and L. Iordaconiu, "The effect of particle concentration on the heating rate of ferrofluids for magnetic hyperthermia," Analele Universitatii de Vest, Timisoara, Vol. LVIII, 81-88, Seria Fizica, 2015. Google Scholar
31. Rosenweig, R. E., "Heating magnetic fluid with alternating magnetic field," Journal of Magnetism and Magnetic Materials, Vol. 252, 370-374, 2002.
doi:10.1016/S0304-8853(02)00706-0 Google Scholar
32. Shah, R. R., T. P. Davis, A. L. Glover, D. E. Nikles, and C. S. Brazel, "Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia," Journal of Magnetism and Magnetic Materials, Vol. 387, 96-106, 2015.
doi:10.1016/j.jmmm.2015.03.085 Google Scholar
33. Obaidat, I. M., B. Issa, and Y. Haik, "Magnetic properties of magnetic nanoparticles for efficient hyperthermia," Nanomaterials, Vol. 5, 63-89, 2015.
doi:10.3390/nano5010063 Google Scholar
34. Jazirehpour, M. and S. A. Seyyed Ebrahimi, "Synthesis of magnetite nanostructures with complex morphologies and effect of these morphologies on magnetic and electromagnetic properties," Ceramics International, Vol. 42, 16512-16520, 2016.
doi:10.1016/j.ceramint.2016.07.067 Google Scholar
35. Jazirehpour, M. and S. A. Seyyed Ebrahimi, "Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles," Journal of Alloys and Compounds, Vol. 638, 188-196, 2015.
doi:10.1016/j.jallcom.2015.03.021 Google Scholar
36. Couper, C., C. N. Marin, and P. C. Fannin, "Biasing field effect on the microwave dielectric properties of magnetic fluids," Physics Procedia, Vol. 9, 58-62, 2010.
doi:10.1016/j.phpro.2010.11.015 Google Scholar