1. Mankins, Y. C., "A technical overview of the “sun tower” solar power satellite concept," Acta Astronavtica, Vol. 50, 369-377, 2002.
doi:10.1016/S0094-5765(01)00167-9 Google Scholar
2. Masumoto, H., "Research on solar power satellites and microwave power transmission in Japan," IEEE Microwave Magazine, Vol. 3, 36-45, 2002.
doi:10.1109/MMW.2002.1145674 Google Scholar
3. Hashimoto, K. and N. Shinohara, "Solar power satellite and its EMC issues," EMC’09, 29-32, Kyoto, 2009. Google Scholar
4. Shinohara, N., "Beam control technologies with a high efficiency phased array for microwave power transmission in Japan," Proceedings of the IEEE, Vol. 101, 1448-1463, 2013.
doi:10.1109/JPROC.2013.2253062 Google Scholar
5. Celeste, A., P. Jeanty, and G. Pignolet, "Case study in Reunion Island," Acta Astronautica, Vol. 54, 253-258, 2004.
doi:10.1016/S0094-5765(02)00302-8 Google Scholar
6. Gomozov, A. V., D. V. Gretskih, V. M. Shokalo, and Sh. F. A. Al-Sammarraie, "Principles of construction and application of the microwave systems for wireless energy transmission of ground and space basing," IEEE Computational Problems of Electrical Engineering, Vol. 2, 15-23, 2012. Google Scholar
7. Dickinson, R. M., "Power in the sky: Requirements for microwave wireless power beamers for powering high-altitude platforms," IEEE Microwave Magazine, Vol. 14, 36-47, 2013.
doi:10.1109/MMM.2012.2234632 Google Scholar
8. Wu, Y., J. Linnartz, et al. "Modeling of RF energy scavenging for batteryless wireless sensors with low input power personal indoor and mobile radio communications," PIMRC, IEEE 24th International Symposium, 527-531, 2013. Google Scholar
9. Lu, X., P. Wang, D. Niyato, et al. "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Communications Surveys and Tutorials, Vol. 17, 757-789, 2015.
doi:10.1109/COMST.2014.2368999 Google Scholar
10. Kotter, D. K., S. D. Novack, W. D. Slafer, and P. J. Pinhero, "Theory and manufacturing processes of solar nanoantenna electromagnetic collectors," Journal of Solar Energy Engineering-transactions of the Asme, Vol. 132, 2010, http://www.academia.edu/8220294.
doi:10.1115/1.4000577 Google Scholar
11. Bankov, S. E., "Signal detection in a radiating nonlinear electromagnetic crystal," Journal of Radio Electronics, No. 1, 2012, http://jre.cplire.ru/jre/jan12/1/text.pdf (in Russian). Google Scholar
12. Semenikhina, D. V., A. I. Semenikhin, T. Y. Privalova, and V. V. Demshevsky, "Parametrical excitation microstrip lattice with nonlinear loads," International Conference on Electromagnetics in Advanced Applications (ICEAA), 245-248, 2014.
doi:10.1109/ICEAA.2014.6903855 Google Scholar
13. Huang, W., B. Zhang, X. Chen, K. Huang, and C. Liu, "Study on an S-band rectenna array for wireless microwave power transmission," Progress In Electromagnetics Research, Vol. 135, 747-758, 2013.
doi:10.2528/PIER12120314 Google Scholar
14. Matsunaga, T., E. Nishiyama, and I. Toyoda, "5.8-GHz stacked differential rectenna suitable for large-scale rectenna arrays with DC connection," IEEE Trans. Antennas and Propag., Vol. 63, 5944-5949, 2015.
doi:10.1109/TAP.2015.2491319 Google Scholar
15. Shifrin, Ya. S. and A. I. Luchaninov, "Antennas with nonlinear elements," The Reference Manual on Antenna Equipment, Vol. 1, 207-235, Moscow, 1997 (in Russian). Google Scholar
16. Luchaninov, A. I. and Y. S. Shifrin, "Mathematical model of antenna with lumped nonlinear elements," Telecommunications and Radio Engineering, Vol. 66, No. 9, 763-803, 2007.
doi:10.1615/TelecomRadEng.v66.i9.10 Google Scholar
17. Shifrin, Y. S., A. I. Luchaninov, and A. S. Posokhov, "Structural model of antennas with nonlinear elements," Telecommunications and Radio Engineering, Vol. 59, No. 1–2, 32-48, 2003.
doi:10.1615/TelecomRadEng.v59.i12.20 Google Scholar
18. Amitay, N., V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, John Wiley & Sons Inc, 1972.
19. Sazonov, D. M., Multi-element Antenna Systems, Matrix Approach, Publishing House “Radiotekhnika”, 2015 (in Russian).
20. Shokalo, M. V., A. I. Luchaninov, A. M. Rybalro, and D. V. Gretskih, Large-aperture rectifying antennas for wireless energy transfer by a microwave beam, Kollegium, Kharkov, 2006 (in Russian).
21. Nesterenko, M. V., V. A. Katrich, and V. M. Dakhov, "Formation of the radiation field with the set spatial-polarization characteristics by the crossed impedance vibrators system," Radiophysics and Quantum Electronics, Vol. 53, 371-378, 2010.
doi:10.1007/s11141-010-9236-6 Google Scholar
22. Nesterenko, M. V., V. A. Katrich, Y. M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, 2011.
doi:10.1007/978-1-4419-7850-9
23. Nesterenko, M. V., V. A. Katrich, V. M. Dakhov, and S. L. Berdnik, "Impedance vibrator with arbitrary point of excitation," Progress In Electromagnetics Research B, Vol. 5, 275-290, 2008.
doi:10.2528/PIERB08022805 Google Scholar
24. Nesterenko, M. V., "Analytical methods in the theory of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 21, 299-328, 2010. Google Scholar
25. Nesterenko, M. V., V. A. Katrich, S. L. Berdnik, Y. M. Penkin, and V. M. Dakhov, "Application of the generalized method of induced EMF for investigation of characteristics of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 26, 149-178, 2010.
doi:10.2528/PIERB10052902 Google Scholar
26. Penkin, Yu. M., V. A. Katrich, and M. V. Nesterenko, "Development of fundamental theory of thin impedance vibrators," Progress In Electromagnetics Research M, Vol. 45, 185-193, 2016.
doi:10.2528/PIERM15120105 Google Scholar