Vol. 73
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-03-14
Plane Wave Diffraction by a Finite Parallel-Plate Waveguide with Sinusoidal Wall Corrugation
By
Progress In Electromagnetics Research B, Vol. 73, 61-78, 2017
Abstract
The diffraction by a finite parallel-plate waveguide with sinusoidal wall corrugation is analyzed for the E-polarized plane wave incidence using the Wiener-Hopf technique combined with the perturbation method. Assuming that the corrugation amplitude of the waveguide walls is small compared with the wavelength and expanding the boundary condition on the waveguide surface into the Taylor series, the problem is reduced to the diffraction by a flat, finite parallel-plate waveguide with a certain mixed boundary condition. Introducing the Fourier transform for the unknown scattered field and applying an approximate boundary condition together with a perturbation series expansion for the scattered field, the problem is formulated in terms of the zero-order and the first-order Wiener-Hopf equations. The Wiener-Hopf equations are solved via the factorization and decomposition procedure leading to the exact and asymptotic solutions. Taking the inverse Fourier transform and applying the saddle point method, a scattered far field expression is derived explicitly. Scattering characteristics of the waveguide are discussed in detail via numerical examples of the radar cross section (RCS).
Citation
Toru Eizawa, and Kazuya Kobayashi, "Plane Wave Diffraction by a Finite Parallel-Plate Waveguide with Sinusoidal Wall Corrugation," Progress In Electromagnetics Research B, Vol. 73, 61-78, 2017.
doi:10.2528/PIERB17010908
References

1. Byelobrov, V. O., T. L. Zinenko, K. Kobayashi, and A. I. Nosich, "Periodicity matters: Grating or lattice resonances in the scattering by sparse arrays of subwavelength strips and wires," IEEE Antennas Propagat. Mag., Vol. 57, No. 6, 34-45, 2015.
doi:10.1109/MAP.2015.2480083        Google Scholar

2. Shestopalov, V. P., The Riemann-Hilbert Method in the Theory of Diffraction and Propagation of Electromagnetic Waves, Kharkov University Press, 1971 (in Russian).

3. Nosich, A. I., "Green’s function-dual series approach in wave scattering by combined resonant scatterers," Analytical and Numerical Methods in Electromagnetic Wave Theory, Chap. 9, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Science House, Tokyo, 1993.        Google Scholar

4. Shestopalov, V. P., L. N. Litvinenko, S. A. Masalov, and V. G. Sologub, Diffraction of Waves by Gratings, Kharkov University Press, 1973 (in Russian).

5. Shestopalov, V. P., A. A. Kirilenko, and S. A. Masalov, Convolution-type Matrix Equations in the Theory of Diffraction, Naukova Dumka Publishing, 1984 (in Russian).

6. Nosich, A. I., "The method of analytical regularization in wave-scattering and eigenvalue problems: Foundations and review of solutions," IEEE Antennas Propagat. Mag., Vol. 41, No. 3, 34-49, 1999.
doi:10.1109/74.775246        Google Scholar

7. Nosich, A. I., "Method of analytical regularization in computational photonics," Radio Sci., Vol. 51, 1421-1430, 2016.
doi:10.1002/2016RS006044        Google Scholar

8. Ikuno, H. and K. Yasuura, "Improved point-matching method with application to scattering from a periodic surface," IEEE Trans. Antennas Propagat., Vol. 21, No. 5, 657-662, 1973.
doi:10.1109/TAP.1973.1140592        Google Scholar

9. Okuno, Y., "The mode-matching method," Analysis Methods for Electromagnetic Wave Problems, Chap. 4, E. Yamashita (ed.), Artech House, Boston, 1990.        Google Scholar

10. Okuno, Y., "An introduction to the Yasuura method," Analytical and Numerical Methods in Electromagnetic Wave Theory, Chap. 11, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Science House, Tokyo, 1993.        Google Scholar

11. Petit, R. (ed.), Electromagnetic Theory of Gratings, Springer-Verlag, 1980.
doi:10.1007/978-3-642-81500-3

12. Hinata, T. and T. Hosono, "On the scattering of electromagnetic wave by plane grating placed in homogeneous medium — Mathematical foundation of point-matching method and numerical analysis," Trans. IECE Japan, Vol. J59-B, No. 12, 571-578, 1976 (in Japanese).        Google Scholar

13. Yamasaki, T., K. Isono, and T. Hinata, "Analysis of electromagnetic fields in inhomogeneous media by Fourier series expansion methods — The case of a dielectric constant mixed a positive and negative regions," IEICE Trans. Electron., Vol. E88-C, No. 12, 2216-2222, 2005.
doi:10.1093/ietele/e88-c.12.2216        Google Scholar

14. Ozaki, R., T. Yamasaki, and T. Hinata, "Scattering of electromagnetic waves by multilayered inhomogeneous columnar dielectric gratings," IEICE Trans. Electron., Vol. E90-C, No. 2, 295-303, 2007.
doi:10.1093/ietele/e90-c.2.295        Google Scholar

15. Noble, B., Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, Pergamon, 1958.

16. Weinstein, L. A., The Theory of Diffraction and the Factorization Method, The Golem Press, 1969.

17. Mittra, R. and S.-W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, 1971.

18. Kobayashi, K., "Wiener-Hopf and modified residue calculus techniques," Analysis Methods for Electromagnetic Wave Problems, Chap. 8, E. Yamashita (ed.), Artech House, Boston, 1990.        Google Scholar

19. Baldwin, G. L. and A. E. Heins, "On the diffraction of a plane wave by an infinite plane grating," Math. Scand., Vol. 2, 103-118, 1954.        Google Scholar

20. Hills, N. L. and S. N. Karp, "Semi-infinite diffraction gratings — I," Comm. Pure Appl. Math., Vol. 18, No. 1–2, 203-233, 1965.
doi:10.1002/cpa.3160180119        Google Scholar

21. Luneburg, E. and K. Westpfahl, "Diffraction of plane waves by an infinite strip grating," Ann. Phys., Vol. 27, No. 3, 257-288, 1971.
doi:10.1002/andp.19714820305        Google Scholar

22. Luneburg, E., "Diffraction by an infinite set of parallel half-planes and by an infinite strip grating," Analytical and Numerical Methods in Electromagnetic Wave Theory, Chap. 7, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Science House, Tokyo, 1993.        Google Scholar

23. Serbest, A. H., A. Kara, and E. Luneburg, "Scattering of plane waves at the junction of two corrugated half-planes," Electromagnetics, Vol. 25, No. 1, 21-38, 2005.
doi:10.1080/02726340590522111        Google Scholar

24. Idemen, M. and A. Alkumru, "Diffraction of two-dimensional high-frequency electromagnetic waves by a locally perturbed two-part impedance plane," Wave Motion, Vol. 42, 53-73, 2005.
doi:10.1016/j.wavemoti.2004.09.003        Google Scholar

25. Ayub, M., M. Ramzan, and A. B. Mann, "Acoustic diffraction by an oscillating strip," Applied Mathematics and Computation, Vol. 214, 201-209, 2009.
doi:10.1016/j.amc.2009.03.089        Google Scholar

26. Kobayashi, K., "Diffraction of a plane wave by the parallel plate grating with dielectric loading," Trans. IECE Japan, Vol. J64-B, No. 10, 1091-1098, 1981 (in Japanese).        Google Scholar

27. Kobayashi, K., "Diffraction of a plane electromagnetic wave by a parallel plate grating with dielectric loading: The case of transverse magnetic incidence," Can. J. Phys., Vol. 63, No. 4, 453-465, 1985.
doi:10.1139/p85-071        Google Scholar

28. Kobayashi, K. and T. Inoue, "Diffraction of a plane wave by an inclined parallel plate grating," IEEE Trans. Antennas Propagat., Vol. 36, No. 10, 1424-1434, 1988.
doi:10.1109/8.8630        Google Scholar

29. Kobayashi, K. and K. Miura, "Diffraction of a plane wave by a thick strip grating," IEEE Trans. Antennas Propagat., Vol. 37, No. 4, 459-470, 1989.
doi:10.1109/8.24166        Google Scholar

30. Das Gupta, S. P., "Diffraction by a corrugated half-plane," Proc. Vib. Prob., Vol. 3, No. 11, 413-424, 1970.        Google Scholar

31. Chakrabarti, A. and S. Dowerah, "Traveling waves in a parallel plate waveguide with periodic wall perturbations," Can. J. Phys., Vol. 62, No. 3, 271-284, 1984.
doi:10.1139/p84-042        Google Scholar

32. Zheng, J. P. and K. Kobayashi, "Diffraction by a semi-infinite parallel-plate waveguide with sinusoidal wall corrugation: Combined perturbation and Wiener-Hopf analysis," Progress In Electromagnetics Research B, Vol. 13, 75-110, 2009.
doi:10.2528/PIERB08120704        Google Scholar

33. Zheng, J. P. and K. Kobayashi, "Combined Wiener-Hopf and perturbation analysis of the H-polarized plane wave diffraction by a semi-infinite parallel-plate waveguide with sinusoidal wall corrugation," Progress In Electromagnetics Research B, Vol. 13, 203-236, 2009.
doi:10.2528/PIERB09021102        Google Scholar

34. Kobayashi, K. and T. Eizawa, "Plane wave diffraction by a finite sinusoidal grating," IEICE Trans., Vol. E74, No. 9, 2815-2826, 1991.        Google Scholar

35. Eizawa, T. and K. Kobayashi, "Wiener-Hopf analysis of the H-polarized plane wave diffraction by a finite sinusoidal grating," Progress In Electromagnetics Research, Vol. 149, 1-13, 2014.
doi:10.2528/PIER14063007        Google Scholar

36. Kobayashi, K., "Some diffraction problems involving modified Wiener-Hopf geometries," Analytical and Numerical Methods in Electromagnetic Wave Theory, Chap. 4, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Science House, Tokyo, 1993.        Google Scholar

37. Kobayashi, K., "Solutions of wave scattering problems for a class of the modified Wiener-Hopf geometries," IEEJ Transactions on Fundamentals and Materials, Vol. 133, No. 5, 233-241, 2013.
doi:10.1541/ieejfms.133.233        Google Scholar

38. Kobayashi, K., "On generalized gamma functions occurring in diffraction theory," J. Phys. Soc. Japan, Vol. 60, 1501-1512, 1991.
doi:10.1143/JPSJ.60.1501        Google Scholar