Vol. 73
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-03-31
Analysis on the Floquet Scattering Lobes from Microwave Calibration Targets
By
Progress In Electromagnetics Research B, Vol. 73, 147-161, 2017
Abstract
The calibration target is a vital instrument for calibrating space-borne microwave radiometers, and its emissivity performance must be accurately determined before usage. Based on the Kirchhoff's law of thermal equilibrium, the emissivity of a calibration target can be determined from its electromagnetic reflectivity, which is defined as space integration of scattering. However, due to the general shape of periodic coated sharp pyramids, the scattering from calibration targets shows Floquet mode properties with scattering lobes in upper space. That phenomenon must be considered in the reflectivity measurement of calibration target, especially in the mono-static backscattering configuration. To support such backscattering-based reflectivity measurement, the Floquet mode and scattering patterns from periodic unit and finite-sized array are investigated by numerical simulations, more specifically, by the finite-difference time domain (FDTD) algorithm. The investigations include the scattering power distributions among scattering lobes from coated and bare pyramid arrays, and the ratio of total reflection to backscattering in cases of typical parameters. It is found in the millimeter wave region that the scattering power from bare pyramids is still concentrated in the backscattering lobe in the mono-static configuration, while for the coated pyramids the scattering power is distributed around Floquet modes. For the considered geometry and coating parameters, the power ratio of total scattering to backscattering can be more than 10 dB at the cared frequencies. After all, the numerical results provide referencing correction factor for actual measurement studies. It is also validated by numerical results and suggested in practice, to use periodic simulations of low computational burden to evaluate the compensation factor for the mono-static reflectivity measurement.
Citation
Qingsong Gao, Yuan Tao, Chunyan Jing, Ming Jin, Dong Xia, and Ming Bai, "Analysis on the Floquet Scattering Lobes from Microwave Calibration Targets," Progress In Electromagnetics Research B, Vol. 73, 147-161, 2017.
doi:10.2528/PIERB17011104
References

1. Yang, H., F. Weng, L. Lv, N. Lu, G. Liu, M. Bai, Q. Qian, J. He, and H. Xu, "The FengYun-3 microwave radiation imager on-orbit verification," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 11, 4452-4560, 2011.
doi:10.1109/TGRS.2011.2148200

2. Wang, Z.-Z., J. Li, S. Zhang, and Y. Li, "Prelaunch calibration of microwave humidity sounder on China’s FY-3A," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 1, 29-33, 2011.
doi:10.1109/LGRS.2010.2050676

3. Nian, F., Y.-J. Yang, Y.-M. Chen, D.-Z. Xu, and W. Wang, "Recent progress on space-borne microwave sounder pre-launch calibration technologies in China," Journal System Engineering Electronics, Vol. 19, No. 4, 643-650, 2008.
doi:10.1016/S1004-4132(08)60133-4

4. Randa, J., A. Cox, and D. K. Walker, "Proposed development of a national standard of microwave brightness temperature," IEEE Proc. IGARSS, 3979-3982, Jul. 31–Aug. 4, 2006.

5. Nian, F., Y.-J. Yang, and W. Wang, "Research of optimizing the microwave wide band blackbody calibration target," Journal of Systems Engineering and Electronics, Vol. 20, No. 1, 6-12, 2009.

6. Wang, J.-H., J.-G. Miao, Y.-J. Yang, and Y.-M. Chen, "Scattering property and emissivity of a periodic pyramid array covered with absorbing material," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2656-2663, 2008.
doi:10.1109/TAP.2008.927570

7. Sandeep, S. and A. J. Gasiewski, "Electromagnetic analysis of radiometer calibration targets using dispersive 3D FDTD," 2012 IEEE Trans. Antennas Propagat., Vol. 60, No. 6, 2821-2828, 2012.
doi:10.1109/TAP.2012.2194679

8. Jin, M., M. Bai, and J.-G. Miao, "Emissivity study of the array shaped blackbody in the microwave band," Acta Phys. Sin., Vol. 61, No. 16, 164211, 2012 (in Chinese).

9. Wang, J.-H., Y.-J. Yang, J.-G. Miao, and Y.-M. Chen, "Emissivity calculation for a finite circular array of pyramidal absorbers based on Kirchhoff’s law of thermal radiation," 2010 IEEE Trans. Antennas Propagat., Vol. 58, No. 4, 1173-1180, 2010.
doi:10.1109/TAP.2010.2041148

10. Bai, M., M. Jin, N.-M. Ou, and J.-G. Miao, "On scattering from an array of absorptive material coated cones by the PWS approach," 2013 IEEE Trans. Antennas Propagat., Vol. 61, No. 6, 3216-3224, 2013.
doi:10.1109/TAP.2013.2247733

11. Pan, G., M. Jin, L.-S. Zhang, M. Bai, and J.-G. Miao, "An efficient scattering algorithm for smooth and sharp surfaces: Coiflet-based scalar MFIE," IEEE Trans. Antennas Propagat., Vol. 62, No. 8, 4241-4250, 2014.
doi:10.1109/TAP.2014.2322886

12. Jin, M., M. Bai, L.-S. Zhang, G. Pan, and J.-G. Miao, "On the coiflet-TDS solution for scattering by sharp coated cones and its application to emissivity determination," IEEE Trans. Geosci. Remote Sensing, Vol. 54, No. 3, 1399-1409, 2016.
doi:10.1109/TGRS.2015.2480403

13. Sandeep, S. and A. J. Gasiewski, "Effect of geometry on the reflectivity spectrum of radiometer calibration targets," IEEE Geosci. Remote. Sensing. Lett., Vol. 11, No. 1, 84-88, 2014.
doi:10.1109/LGRS.2013.2246914

14. Chen, C.-Y., F. Li, Y.-J. Yang, and Y.-M. Chen, "Emissivity measurement study on wide aperture microwave radiator," IEEE Proc. ICMMT, 914-917, Apr. 21–24, 2008.

15. Gu, D.-Z., D. Houtz, J. Randa, and D. K. Walker, "Reflectivity study of microwave blackbody target," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 9, 3443-3451, 2011.
doi:10.1109/TGRS.2011.2125975

16. Houtz, D., D. K. Walker, and D.-Z. Gu, "Progress towards a NIST microwave brightness temperature standard for remote sensing," IEEE Proc. IGARSS, 3485-3488, Jul. 26–31, 2015.

17. Gu, D.-Z., J. Randa, and D. K. Walker, "A geometric error model for misaligned calibration target in passive microwave remote-sensing systems," IEEE Geosci. Remote. Sensing. Lett., Vol. 10, No. 6, 1597-1601, 2013.
doi:10.1109/LGRS.2013.2262471

18. Gu, D.-Z. and D. K. Walker, "Application of coherence theory to modeling of blackbody radiation at close range," IEEE Trans. Microwave Theory Tech., Vol. 63, No. 5, 1475-1488, 2015.
doi:10.1109/TMTT.2015.2418193

19. http://www.eccosorb.com/products-eccosorb-cr.htm; www.eccosorb.com/products-eccosorbmf.htm, , .