Vol. 66
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-03-13
The Testing Scheme for Steel Corrosion in the Reinforced Concrete via Near Field Effect of Meter-Band Wave
By
Progress In Electromagnetics Research Letters, Vol. 66, 127-134, 2017
Abstract
This paper presents a testing scheme for the steel corrosion in reinforced concrete based on near-field effect of meter wave. The physical mechanism of the near-field method was introduced, and the structure of the measurement device was presented in detail. The electromagnetic field near the steel bar buried in the concrete structure was simulated by the finite difference time domain method. The simulated data show that the mean radiation power decreases monotonously with the increase of the corroded depth of the steel bar, and the corroded area is promising to be imaged directly due to the localization of near field. The results indicate that the near-field technique can act as a new nondestructive testing technique to detect and even image the corrosion area buried in concrete in engineering structure.
Citation
Ruiqiang Zhao, Hong Zhang, Jianting Zhou, Leng Liao, and Runchuan Xia, "The Testing Scheme for Steel Corrosion in the Reinforced Concrete via Near Field Effect of Meter-Band Wave," Progress In Electromagnetics Research Letters, Vol. 66, 127-134, 2017.
doi:10.2528/PIERL17011403
References

1. Zhu, X., G. Zi, W. Lee, S. Kim, and J. Kong, "Probabilistic analysis of reinforcement corrosion due to the combined action of carbonation and chloride ingress in concrete," Constr. Build. Mater., Vol. 124, 667-680, 2016.
doi:10.1016/j.conbuildmat.2016.07.120

2. Rehman, S. K. U., Z. Ibrahim, S. A. Memon, and M. Jameel, "Nondestructive test methods for concrete bridges: A review," Constr. Build. Mater., Vol. 107, 58-86, 2016.
doi:10.1016/j.conbuildmat.2015.12.011

3. Česen, A., T. Kosec, and A. Legat, "Characterization of steel corrosion in mortar by various electrochemical and physical techniques," Corros. Sci., Vol. 75, 47-57, 2013.
doi:10.1016/j.corsci.2013.05.015

4. Reou, J. S. and K. Y. Ann, "Electrochemical assessment on the corrosion risk of steel embedment in OPC concrete depending on the corrosion detection techniques," Mater. Chem. Phys., Vol. 113, No. 1, 78-84, 2009.
doi:10.1016/j.matchemphys.2008.07.063

5. Yeih, W. and R. Huang, "Detection of the corrosion damage in reinforced concrete members by ultrasonic testing," Cem. Concr. Res., Vol. 28, No. 7, 1071-1083, 1998.
doi:10.1016/S0008-8846(98)00060-X

6. Patil, S., B. Karkare, and S. Goyal, "Acoustic emission vis-a-vis electrochemical techniques for corrosion monitoring of reinforced concrete element," Constr. Build. Mater., Vol. 68, 326-332, 2014.
doi:10.1016/j.conbuildmat.2014.06.068

7. Zaki, A., H. K. Chai, D. G. Aggelis, and N. Alver, "Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique," Sensors, Vol. 15, No. 8, 19069-19101, 2015.
doi:10.3390/s150819069

8. Ohtsu, M., K. Mori, and Y. Kawasaki, "Corrosion process and mechanisms of corrosion-induced cracks in reinforced concrete identified by AE analysis," Strain, Vol. 47, 179-186, 2011.
doi:10.1111/j.1475-1305.2010.00754.x

9. Xu, C., N. Zhou, J. Xie, X. Gong, G. Chen, and G. Song, "Investigation on eddy current pulsed thermography to detect hidden cracks on corroded metal surface," NDT E Int., Vol. 84, 27-35, 2016.
doi:10.1016/j.ndteint.2016.07.002

10. Cacciola, M., S. Calcagno, G. Megali, F. C. Morabito, D. Pellicano, and M. Versaci, "FEA design and misfit minimization for in-depth flaw characterization in metallic plates with eddy current nondestructive testing," IEEE Trans. Magn., Vol. 45, No. 3, 1506-1509, 2009.
doi:10.1109/TMAG.2009.2012691

11. Buonsanti, M., M. Cacciola, G. Megali, F. C. Morabito, D. Pellicanò, and M. Versaci, "A rotating magnetic field for detection of cracks in metal welded joints and quality control," Proceedings of the Ninth International Conference on Computational Structures Technology, Paper 68, Stirlingshire, UK, 2008.

12. Kylili, A., P. A. Fokaides, P. Christou, and S. A. Kalogirou, "Infrared thermography (IRT) applications for building diagnostics: A review," Appl. Energy, Vol. 134, 531-549, 2014.
doi:10.1016/j.apenergy.2014.08.005

13. Bagavathiappan, S., B. B. Lahiri, T. Saravanan, J. Philip, and T. Jayakumar, "Infrared thermography for condition monitoring - A review," Infrared Phys. Technol., Vol. 60, 35-55, 2013.
doi:10.1016/j.infrared.2013.03.006

14. Kobayashi, K. and N. Banthia, "Corrosion detection in reinforced concrete using induction heating and infrared thermography," J. Civ. Struct. Health Monit., Vol. 1, No. 1-2, 25-35, 2011.
doi:10.1007/s13349-010-0002-4

15. Hong, S., H. Wiggenhauser, R. Helmerich, B. Dong, P. Dong, and F. Xing, "Long-term monitoring of reinforcement corrosion in concrete using ground penetrating radar," Corros. Sci., Vol. 114, 123-132, 2017.
doi:10.1016/j.corsci.2016.11.003

16. Zhang, H., L. Liao, R. Zhao, J. Zhou, M. Yang, and R. Xia, "The non-destructive test of steel corrosion in reinforced concrete bridges using a micro-magnetic sensor," Sensors, Vol. 16, No. 9, 1439, 2016.
doi:10.3390/s16091439

17. Fernandes, B., D. Nims, and V. Devabhaktuni, "Comprehensive MMF-MFL inspection for corrosion detection and estimation in embedded prestressing strands," J. Civ. Struct. Health Monit., Vol. 4, No. 1, 43-55, 2014.
doi:10.1007/s13349-013-0061-4

18. Xu, Y., K. Li, L. Liu, L. Yang, X. Wang, and Y. Huang, "Experimental study on rebar corrosion using the galvanic sensor combined with the electronic resistance technique," Sensors, Vol. 16, No. 9, 1451, 2016.
doi:10.3390/s16091451

19. Tan, C. H., Y. G. Shee, B. K. Yap, and F. R. M. Adikan, "Fiber Bragg grating based sensing system: Early corrosion detection for structural health monitoring," Sens. Actuators Phys., Vol. 246, 123-128, 2016.
doi:10.1016/j.sna.2016.04.028

20. Mao, J., J. Chen, L. Cui, W. Jin, C. Xu, and Y. He, "Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors," Sensors, Vol. 15, No. 4, 8866-8883, 2015.
doi:10.3390/s150408866

21. Takahashi, Y., "In-situ X-ray diffraction of corrosion products formed on iron surfaces," Mater. Trans., Vol. 46, No. 3, 637-642, 2005.
doi:10.2320/matertrans.46.637

22. Wu, Z., "Imaging of soft material with carbon nanotube tip using near-field scanning microwave microscopy," Ultramicroscopy, Vol. 148, 75-80, 2015.
doi:10.1016/j.ultramic.2014.09.008

23. Kawata, S., Y. Inouye, and P. Verma, "Plasmonics for near-field nano-imaging and superlensing," Nat. Photonics, Vol. 3, No. 7, 388-394, 2009.
doi:10.1038/nphoton.2009.111

24. Oka, S., H. Togo, N. Kukutsu, and T. Nagatsuma, "Latest trends in millimeter-wave imaging technology," Progress In Electromagnetics Research Letters, Vol. 1, 197-204, 2008.
doi:10.2528/PIERL07120604

25. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.

26. Wang, P., Y. Pei, and L. Zhou, "Near-field microwave identification and quantitative evaluation of liquid ingress in honeycomb sandwich structures," NDT E Int., Vol. 83, 32-37, 2016.
doi:10.1016/j.ndteint.2016.06.002

27. Haddadi, K., S. Gu, and T. Lasri, "Sensing of liquid droplets with a scanning near-field microwave microscope," Sens. Actuators Phys., Vol. 230, 170-174, 2015.
doi:10.1016/j.sna.2015.04.028

28. Hussein, K. F. A., "Efficient near-field computation for radiation and scattering from conducting surfaces of arbitrary shape," Progress In Electromagnetics Research, Vol. 69, 267-285, 2007.
doi:10.2528/PIER07010302

29. Haddadi, K., J. Marzouk, S. Gu, S. Arscott, G. Dambrine, and T. Lasri, "Interferometric near-field microwave microscopy platform for electromagnetic micro-analysis," Procedia Eng., Vol. 87, 388-391, 2014.
doi:10.1016/j.proeng.2014.11.733

30. Esslinger, M. and R. Vogelgesang, "Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes," Acs Nano, Vol. 6, No. 9, 8173-8182, 2012.
doi:10.1021/nn302864d

31. Sundaramurthy, A., P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas," Nano Lett., Vol. 6, No. 3, 355-360, 2006.
doi:10.1021/nl052322c

32. Gao, C., X. Xiang, and Z. Wu, "Novel scanning tip microwave near-field microscopy," Physics, Vol. 68, No. 68, 3506-3508, 1999.

33. Castro, A. F., M. Valcuende, and B. Vidal, "Using microwave near-field reflection measurements as a non-destructive test to determine water penetration depth of concrete," NDT E Int., Vol. 75, 26-32, 2015.
doi:10.1016/j.ndteint.2015.06.003