1. Harrington, R. F., Field Computation by Moment Methods, ser. IEEE Press Series on Electromagnetic Wave Theory, Wiley-IEEE Press, 1993.
doi:10.1109/9780470544631
2. Correia, L. M., "A comparison of integral equations with unique solution in the resonant region for scattering by conducting bodies," IEEE Trans. Antennas Propag., Vol. 41, No. 1, 52-58, Jan. 1993.
doi:10.1109/8.210115 Google Scholar
3. Schenck, H. A., "Improved integral formulation for acoustic radiation problems," J. Acoust. Soc. Amer., Vol. 44, 41-48, Jul. 1968.
doi:10.1121/1.1911085 Google Scholar
4. Waterman, P. C., "Numerical solution of electromagnetic scattering problems," Computer Techniques for Electromagnetics, 1987. Google Scholar
5. Mittra, R. and C. A. Klein, "Stability and convergence of moment method solution," Numerical and Asymptotic Techniques in Electromagnetics, R. Mittra, Ed., Springer-Verlag, New York, 1975. Google Scholar
6. Mautz, J. R. and R. F. Harrington, "A combined-source formulation for radiation and scattering from a perfectly conducting body," IEEE Trans. Antennas Propag., Vol. 27, 445-454, Jul. 1979. Google Scholar
7. Tobin, R., A. D. Yaghjian, and M. M. Bell, "Surface integral equations for multi-wavelength arbitrary shaped, perfectly conducting bodies," Proc. Dig. 19th URSI Radio Sci. Meet., 7, Boulder, CO, Jan. 1987. Google Scholar
8. Mautz, J. R. and R. F. Harrington, "H-field, E-field, and combined field solutions for conducting bodies of revolution," AEU, Vol. 32, No. 4, 159-164, Apr. 1978. Google Scholar
9. Colton, D. and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, 1993.
10. Bolomey, J. C. and W. Tabbara, "Numerical aspects on coupling between complementary boundary value problems," IEEE Trans. Antennas Propag., Vol. 21, 356-363, May 1973.
doi:10.1109/TAP.1973.1140500 Google Scholar
11. Contopanagos, H., B. Dembart, M. Epton, J. J. Ottusch, V. Rokhlin, J. L. Visher, and S. M. Wandzura, "Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering," IEEE Trans. Antennas Propag., Vol. 50, No. 12, 1824-1830, Dec. 2002.
doi:10.1109/TAP.2002.803956 Google Scholar
12. Liu, Z., R. J. Adams, and L. Carin, "Well-conditioned MLFMA formulation for closed PEC targets in the vicinity of a half space," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2822-2829, Oct. 2003. Google Scholar
13. Adams, R. J., "Combined field integral equation formulations for electromagnetic scattering from convex geometries," IEEE Trans. Antennas Propag., Vol. 52, No. 5, 1294-1303, May 2004.
doi:10.1109/TAP.2004.827246 Google Scholar
14. Borel, S., D. P. Levadoux, and F. Alouges, "A new well-conditioned integral formulation for Maxwell equations in three dimensions," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 2995-3004, Sep. 2005.
doi:10.1109/TAP.2005.854561 Google Scholar
15. Smith, M. H. and A. F. Peterson, "Numerical solution of the CFIE using vector bases and dual interlocking meshes," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3334-3339, Oct. 2005.
doi:10.1109/TAP.2005.856332 Google Scholar
16. Andriulli, F. and E. Michielssen, "A regularized combined field integral equation for scattering from 2-D perfect electrically conducting objects," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2522-2529, Sep. 2007.
doi:10.1109/TAP.2007.904083 Google Scholar
17. Yla-Oijala, P., M. Taskinen, and J. Seppo, "Analysis of surface integral equations in electromagnetic scattering and radiation problems," Eng. Anal. Boundary Elements, Vol. 32, 196-209, 2008.
doi:10.1016/j.enganabound.2007.08.004 Google Scholar
18. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool, 2009.
19. Nosich, I., "Method of analytical regularization in computational photonics," Radio Science, Vol. 51, No. 8, 1421-1430, Aug. 2016.
doi:10.1002/2016RS006044 Google Scholar
20. Rius, J. M., E. Ubeda, and J. Parron, "On the testing of the magnetic field integral equation with RWG basis functions in method of moments," IEEE Trans. Antennas Propag., Vol. 49, No. 11, 1550-1553, Nov. 2001.
doi:10.1109/8.964090 Google Scholar
21. Ergul, O. and L. Gurel, "Linear-linear basis functions for MLFMA solutions of magnetic field and combined field integral equations," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1103-1110, Apr. 2007.
doi:10.1109/TAP.2007.893393 Google Scholar
22. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall, Taylor & Francis Group, Boca Raton, 2008.
23. Yan, S., J.-M. Jin, and Z. Nie, "Improving the accuracy of the second-kind Fredholm integral equations by using the Buffa-Christiansen functions," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1299-1310, Apr. 2011.
doi:10.1109/TAP.2011.2109364 Google Scholar
24. Ubeda, E., J. M. Tamayo, J. M. Rius, and A. Heldring, "Stable discretization of the electricmagnetic field integral equation with the Taylor-orthogonal basis functions," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1484-1490, Mar. 2013.
doi:10.1109/TAP.2012.2227925 Google Scholar
25. Zalevsky, G. S., O. I. Sukharevsky, V. A. Vasilets, and S. V. Nechitaylo, "Secondary radiation of resonance perfectly conducting objects," Journal of Communications Technology and Electronics, Vol. 59, No. 12, 1321-1332, 2014.
doi:10.1134/S1064226914100106 Google Scholar
26. Sukharevsky, O. I., G. S. Zalevsky, and V. A. Vasilets, "Modeling of ultrawideband (UWB) impulse scattering by aerial and subsurface resonant objects based on integral equation solving," Advanced Ultrawideband Radar: Signals, Targets, and Applications, J. D. Taylor, Ed., CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2016. Google Scholar
27. Kolmogorov, S. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover, 1999.
28. Eswaran, K., "On the solutions of a class of dual integral equations occurring in diffraction problems," Proc. Roy. Soc. London, Ser. A, Vol. 429, 399-427, 1990.
doi:10.1098/rspa.1990.0066 Google Scholar
29. Veliev, E. I. and V. V. Veremey, "Numerical-analytical approach for the solution to the wave scattering by polygonal cylinders and flat strip structures," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Science House, Tokyo, 1993. Google Scholar
30. Davis, M. J. and R. W. Scharstein, "Electromagnetic plane wave excitation of an open-ended finitelength conducting cylinder," Journal of Electromagnetic Waves and Applications, Vol. 7, 301-319, 1993.
doi:10.1163/156939393X00354 Google Scholar
31. Hongo, K. and H. Serizawa, "Diffraction of electromagnetic plane wave by rectangular plate and rectangular hole in the conducting plate," IEEE Trans. Antennas Propag., Vol. 47, No. 6, 1029-1041, Jun. 1999.
doi:10.1109/8.777128 Google Scholar
32. Bliznyuk, N. Y., A. I. Nosich, and A. N. Khizhnyak, "Accurate computation of a circular-disk printed antenna axisymmetrically excited by an electric dipole," Microwave and Optical Technology Letters, Vol. 25, No. 3, 211-216, 2000.
doi:10.1002/(SICI)1098-2760(20000505)25:3<211::AID-MOP15>3.0.CO;2-D Google Scholar
33. Tsalamengas, J. L., "Rapidly converging direct singular integral-equation techniques in the analysis of open microstrip lines on layered substrates," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 3, 555-559, Mar. 2001.
doi:10.1109/22.910563 Google Scholar
34. Losada, V., R. R. Boix, and F. Medina, "Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive halfspace," IEEE Trans. Geosci. Remote Sensing, Vol. 41, 988-997, May 2003.
doi:10.1109/TGRS.2003.810678 Google Scholar
35. Lucido, M., G. Panariello, and F. Schettino, "Accurate and efficient analysis of stripline structures," Microwave and Optical Technology Letters, Vol. 43, No. 1, 14-21, Oct. 2004.
doi:10.1002/mop.20361 Google Scholar
36. Lucido, M., G. Panariello, and F. Schettino, "Analysis of the electromagnetic scattering by perfectly conducting convex polygonal cylinders," IEEE Trans. Antennas Propag., Vol. 54, 1223-1231, Apr. 2006.
doi:10.1109/TAP.2006.872662 Google Scholar
37. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102 Google Scholar
38. Lucido, M., G. Panariello, and F. Schettino, "Electromagnetic scattering by multiple perfectly conducting arbitrary polygonal cylinders," IEEE Trans. Antennas Propag., Vol. 56, 425-436, Feb. 2008.
doi:10.1109/TAP.2007.915419 Google Scholar
39. Lucido, M., G. Panariello, and F. Schettino, "TE scattering by arbitrarily connected conducting strips," IEEE Trans. Antennas Propag., Vol. 57, 2212-2216, Jul. 2009. Google Scholar
40. Coluccini, G., M. Lucido, and G. Panariello, "TM scattering by perfectly conducting polygonal cross-section cylinders: A new surface current density expansion retaining up to the second-order edge behavior," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 407-412, Jan. 2012.
doi:10.1109/TAP.2011.2167924 Google Scholar
41. Lucido, M., "An analytical technique to fast evaluate mutual coupling integrals in spectral domain analysis of multilayered coplanar coupled striplines," Microwave and Optical Technology Letters, Vol. 54, No. 4, 1035-1039, Apr. 2012.
doi:10.1002/mop.26674 Google Scholar
42. Lucido, M., "A new high-efficient spectral-domain analysis of single and multiple coupled microstrip lines in planarly layered media," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 7, 2025-2034, Jul. 2012.
doi:10.1109/TMTT.2012.2195025 Google Scholar
43. Coluccini, G., M. Lucido, and G. Panariello, "Spectral domain analysis of open single and coupled microstrip lines with polygonal cross-section in bound and leaky regimes," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 2, 736-745, Feb. 2013.
doi:10.1109/TMTT.2012.2231424 Google Scholar
44. Lucido, M., "An efficient evaluation of the self-contribution integrals in the spectral-domain analysis of multilayered striplines," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 360-363, 2013.
doi:10.1109/LAWP.2013.2252139 Google Scholar
45. Coluccini, G. and M. Lucido, "A new high efficient analysis of the scattering by a perfectly conducting rectangular plate," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2615-2622, May 2013.
doi:10.1109/TAP.2012.2237533 Google Scholar
46. Lucido, M., "Complex resonances of a rectangular patch in a multilayered medium: A new accurate and efficient analytical technique," Progress In Electromagnetics Research, Vol. 145, 123-132, 2014.
doi:10.2528/PIER14020204 Google Scholar
47. Lucido, M., "Electromagnetic scattering by a perfectly conducting rectangular plate buried in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 10, 6368-6378, Oct. 2014.
doi:10.1109/TGRS.2013.2296353 Google Scholar
48. Lucido, M., G. Panariello, and F. Schettino, "An EFIE formulation for the analysis of leakywave antennas based on polygonal cross-section open waveguides," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 983-986, May 2014.
doi:10.1109/LAWP.2014.2323431 Google Scholar
49. Lucido, M., "Scattering by a tilted strip buried in a lossy half-space at oblique incidence," Progress In Electromagnetics Research M, Vol. 37, 51-62, 2014.
doi:10.2528/PIERM14041507 Google Scholar
50. Corsetti, F., M. Lucido, and G. Panariello, "Effective analysis of the propagation in coupled rectangular-core waveguides," IEEE Photonics Technology Letters, Vol. 26, No. 18, 1855-1858, Sep. 2014.
doi:10.1109/LPT.2014.2338074 Google Scholar
51. Lucido, M., G. Panariello, D. Pinchera, and F. Schettino, "Cut-off wavenumbers of polygonal cross section waveguides," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 10, 656-658, Oct. 2014.
doi:10.1109/LMWC.2014.2340735 Google Scholar
52. Di Murro, F., M. Lucido, G. Panariello, and F. Schettino, "Guaranteed-convergence method of analysis of the scattering by an arbitrarily oriented zero-thickness PEC disk buried in a lossy half-space," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3610-3620, Aug. 2015.
doi:10.1109/TAP.2015.2438336 Google Scholar
53. Lucido, M., M. D. Migliore, and D. Pinchera, "A new analytically regularizing method for the analysis of the scattering by a hollow finite-length PEC circular cylinder," Progress In Electromagnetics Research B, Vol. 70, 55-71, 2016.
doi:10.2528/PIERB16081404 Google Scholar
54. Lucido, M., G. Panariello, and F. Schettino, "Scattering by a zero-thickness PEC disk: A new analytically regularizing procedure based on Helmholtz decomposition and Galerkin method," Radio Science, Vol. 52, No. 1, 2-14, Jan. 2017.
doi:10.1002/2016RS006140 Google Scholar
55. Meixner, J., "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propag., Vol. 20, 442-446, 1972.
doi:10.1109/TAP.1972.1140243 Google Scholar
56. Jones, D. S., The Theory of Electromagnetism, Pergamon Press, 1964.
57. Abramowitz, M. and I. A. Stegun, "Handbook of Mathematical Functions," Verlag Harri Deutsch, 1984. Google Scholar
58. Overfelt, P. L. and D. J. White, "TE and TM modes of some triangular cross-section waveguides using superposition of plane waves," IEEE Trans. Microw. Theory Tech., Vol. 34, 161-167, 1986.
doi:10.1109/TMTT.1986.1133294 Google Scholar