1. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater., Vol. 7, 442-453, 2008.
doi:10.1038/nmat2162 Google Scholar
2. Guoa, L., J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, "Strategies for enhancing the sensitivity of plasmonic nanosensors," Nano Today, Vol. 10, No. 2, 213-239, 2015.
doi:10.1016/j.nantod.2015.02.007 Google Scholar
3. Hsu, C. W., B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Solijaci, "Transparent displays enabled by resonant nanoparticle scattering," Nat. Commun., Vol. 5, 2014. Google Scholar
4. Colomban, P., "The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze Age to Present Times in lustre pottery and glass: Solid state chemistry, spectroscopy and nanostructure," J. Nano Res., Vol. 8, 109-132, 2009.
doi:10.4028/www.scientific.net/JNanoR.8.109 Google Scholar
5. Blosi, M., S. Albonetti, F. Gatti, G. Baldi, and M. Dondi, "Au-Ag nanoparticles as red pigment in ceramic inks for digital decoration," Dyes Pigm., Vol. 94, 355-362, 2012.
doi:10.1016/j.dyepig.2012.01.006 Google Scholar
6. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-VCH, 2008.
7. Elimelech, M., X. Jia, J. Gregory, and R. Williams, "Particle Deposition and Aggregation: Measurement, Modelling and Simulation," Butterworth-Heinemann, 1995. Google Scholar
8. Burns, M. M., J. M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett., Vol. 63, No. 12, 1233-1236, 1989.
doi:10.1103/PhysRevLett.63.1233 Google Scholar
9. Kimura, K., "Photoinduced coagulation of Au nanocolloids," J. Phys. Chem., Vol. 98, No. 8, 2143-2147, 1994.
doi:10.1021/j100059a029 Google Scholar
10. Kimura, K., "Photoenhanced van der Waals attractive force of small metallic particles," J. Phys. Chem., Vol. 98, No. 46, 11997-12002, 1994.
doi:10.1021/j100097a027 Google Scholar
11. Chen, H., S. Liu, J. Zi, and Z. Lin, "Fano resonance-induced negative optical scattering force on plasmonic nanoparticles," ACS Nano, Vol. 9, No. 2, 1926-1935, 2015.
doi:10.1021/nn506835j Google Scholar
12. Chen, H., C. Liang, S. Liu, and Z. Lin, "Chirality sorting using two-wave-interference induced lateral optical force," Phys. Rev. A, Vol. 93, No. 5, 053833, 2016.
doi:10.1103/PhysRevA.93.053833 Google Scholar
13. Chen, H., Y. Jiang, N. Wang, W. Lu, S. Liu, and Z. Lin, "Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves," Opt. Lett., Vol. 40, No. 23, 5530-5533, 2015.
doi:10.1364/OL.40.005530 Google Scholar
14. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.
15. Fujii, M., "Radius-dependent binding or repelling forces exerted on metal nano-sphere clusters by infrared-induced plasmonic resonance," Opt. Commun., Vol. 285, No. 21–22, 4553-4557, 2012.
doi:10.1016/j.optcom.2012.06.075 Google Scholar
16. Shalin, A. S., P. Ginzburg, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, "Nano-opto-mechanical effects in plasmonic waveguides," Laser. Photon. Rev., Vol. 8, No. 1, 131-136, 2014.
doi:10.1002/lpor.201300109 Google Scholar
17. Xiao, J. J. and C. T. Chan, "Calculation of the optical force on an infinite cylinder with arbitrary cross section by the boundary element method," J. Opt. Soc. Am. B, Vol. 25, No. 9, 1553-1561, 2008.
doi:10.1364/JOSAB.25.001553 Google Scholar
18. Sikora, J., M. Panczyk, and P. Wieleba, "Hybrid boundary element method applied for diffusion tomography problems," Computer Vision in Robotics and Industrial Applications, 197-229, World Scientific, 2014. Google Scholar
19. Chaumet, P. C. and A. Rahmani, "Electromagnetic force and torque on magnetic and negative-index scatters," Opt. Express, Vol. 17, No. 4, 2224-2234, 2009.
doi:10.1364/OE.17.002224 Google Scholar
20. Demir, V., "Graphics processor unit (GPU) acceleration of finite-difference frequency-domain (FDFD) method," Progress In Electromagnetics Research M, Vol. 23, 29-51, 2012.
doi:10.2528/PIERM11090909 Google Scholar
21. Deinega, A. and I. Valuev, "Subpixel smoothing for conductive and dispersive media in the finitedifference time-domain method," Opt. Lett., Vol. 32, No. 23, 3429-3431, 2007.
doi:10.1364/OL.32.003429 Google Scholar
22. Kottke, C., A. Farjadpour, and S. G. Johnson, "Perturbation theory for anisotropic dielectric interfaces, and application to subpixel smoothing of discretized numerical methods," Phys. Rev. E, Vol. 77, 036611, 2008.
doi:10.1103/PhysRevE.77.036611 Google Scholar
23. Rakic, A. D., A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt., Vol. 37, No. 22, 5271-5283, 1998.
doi:10.1364/AO.37.005271 Google Scholar
24. Yamaguchi, T., "Finite-difference time-domain analysis of Hemi-Teardrop-shaped near-field optical probe," Electron. Lett., Vol. 44, No. 4, 310-311, 2008.
doi:10.1049/el:20080068 Google Scholar
25. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Technol. Lett., Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A Google Scholar
26. Sleijpen, G. L. G. and D. R. Fokkema, "BiCGstab(l) for linear equations involving unsymmetric matrices with complex spectrum," ETNA, Vol. 1, 11-32, 1993. Google Scholar