1. Gabriel, C., S. Gabriel, and E. Courthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
2. Joines, M. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, No. 4, 547-550, 1994.
doi:10.1118/1.597312 Google Scholar
3. Haemmerich, D., S. T. Staelin, J. Z. Tsai, S. Tungjitkusolmun, D. M. Mahvi, and J. G. Webster, "In vivo electrical conductivity of hepatic tumors," Physiol. Meas., Vol. 24, 251-260, 2003.
doi:10.1088/0967-3334/24/2/302 Google Scholar
4. Kim, H., A. Merrow, S. Shiraj, B. Wong, P. Horn, and T. Laor, "Analysis of fatty infiltration and inflammation of the pelvic and thigh muscles in boys with Duchenne muscular dystrophy: Grading of the disease involvement on MR imaging and correlation with clinical assessments," Pediatric Radiology, Vol. 43, No. 10, 1327-1335, 2013.
doi:10.1007/s00247-013-2696-z Google Scholar
5. Borcea, L., "Electrical impedance tomography," Inverse Problems, Vol. 18, R99-R136, 2002.
doi:10.1088/0266-5611/18/6/201 Google Scholar
6. Wei, H. Y. and M. Soleimani, "Electromagnetic tomography for medical and industrial applications: challenges and opportunities," Proc. IEEE, Vol. 101, 559-564, 2013.
doi:10.1109/JPROC.2012.2237072 Google Scholar
7. Dekdouk, B., C. Ktistis, D. W. Armitage, and A. J. Peyton, "Absolute imaging of low conductivity material distributions using nonlinear reconstruction methods in MIT," Progress In Electromagnetics Research, Vol. 155, 1-18, 2016.
doi:10.2528/PIER15071705 Google Scholar
8. Feldkamp, J. R., "Single-coil magnetic induction tomographic three-dimensional imaging," J. Medical Imaging, Vol. 2, No. 1, 013502, 2015.
doi:10.1117/1.JMI.2.1.013502 Google Scholar
9. Feldkamp, J. R. and S. Quirk, "Effects of tissue heterogeneity on single-coil, scanning MIT imaging," Proc. SPIE 9783, Medical Imaging 2016: Physics of Medical Imaging, 978359, March 25, 2016. Google Scholar
10. Zaman, A. J. M., S. A. Long, and C. G. Gardner, "The impedance of a single-turn coil near a conducting half space," J. Nondestructive Eval., Vol. 1, No. 3, 183-189, 1980.
doi:10.1007/BF00567090 Google Scholar
11. Feldkamp, J. R. and S. Quirk, "Validation of a convolution integral for conductivity imaging," Progress In Electromagnetic Research Letters, Vol. 67, 1-6, 2017.
doi:10.2528/PIERL17011401 Google Scholar
12. Katamreddy, S. H. and P. K. Yalavarthy, "Model-resolution based regularization improves near infrared diffuse optical tomography," J. Opt. Soc. Am., Vol. 29, No. 5, 649-656, 2012.
doi:10.1364/JOSAA.29.000649 Google Scholar
13. Haskell, K. H. and R. J. Hanson, "An algorithm for linear least squares problems with equality and nonnegativity constraints," Math. Program, Vol. 21, 98-118, 1981.
doi:10.1007/BF01584232 Google Scholar
14. Bjorck, A., "Numerical methods for least squares problems," Society for Industrial and Applied Mathematics, Philadelphia, 1996. Google Scholar
15. Mead, J. L. and R. A. Renaut, "Least squares problems with inequality constraints as quadratic constraints," Linear Algebra and Its Applications, Vol. 432, 1936-1949, 2010.
doi:10.1016/j.laa.2009.04.017 Google Scholar
16. Hansen, P. C., "Relations between SVD and GSVD of discrete regularization problems in standard and general form," Linear Algebra and Its Applications, Vol. 141, 165-176, 1990.
doi:10.1016/0024-3795(90)90315-4 Google Scholar
17. Donatelli, M., A. Neuman, and L. Reichel, "Square regularization matrices for large linear discrete ill-posed problems," Numerical Linear Algebra with Applications, Vol. 19, 896-913, 2012.
doi:10.1002/nla.1833 Google Scholar
18. Elden, L., "Algorithms for the regularization of ill-conditioned least squares problems," BIT, Vol. 17, 134-145, 1977.
doi:10.1007/BF01932285 Google Scholar
19. Chen, D. and R. J. Plemmons, "Nonnegativity constraints in numerical analysis," Proceedings: The Birth of Numerical Analysis, 109-140, Leuven Belgium, 2009. Google Scholar
20. Engl, H. W., "On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed problems," J. of Approximation Theory, Vol. 49, 55-63, 1987.
doi:10.1016/0021-9045(87)90113-4 Google Scholar
21. Hochstenbach, M. and L. Reichel, "An iterative method for Tikhonov regularization with a general linear regularization operator," J. Integral Equ. Appl., Vol. 22, 463-480, 2010. Google Scholar
22. Gradshteyn, I. S. and Ryzhik, Table of Integrals, Series and Products, Corrected and Enlarged Ed., A. Jeffrey, Academic Press, 1980.
23. Lapidus, L. and G. F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering, Wiley-Interscience, J. Wiley & Sons, 1982.
24. Thibault, J.-B., K. D. Sauer, C. A. Bouman, and J. Hsieh, "A three-dimensional statistical approach to improved image quality for multislice helical CT," Medical Physics, Vol. 4, No. 11, 4526-4544, 2007.
doi:10.1118/1.2789499 Google Scholar
25. Feldkamp, J. R. and S. Quirk, "Optically tracked, single-coil, scanning magnetic induction tomography," Proc. SPIE 10132, Medical Imaging 2017: Physics of Medical Imaging, 10132P, March 9, 2017. Google Scholar
26. Wiles, A. D., D. G. Thompson, and D. D. Frantz, "Accuracy assessment and interpretation for optical tracking systems," Medical Imaging Proceedings (SPIE) 5367; Visualization, Image-Guided Procedures, and Display, 433, 2004. Google Scholar
27. Fang, L., J. F. P. F. Abascal, M. Desco, and M. Soleimani, "Total variation regularization with split Bregman-based method in magnetic induction tomography using experimental data," IEEE Sensors Journal, Vol. 17, No. 4, 976-985, 2017.
doi:10.1109/JSEN.2016.2637411 Google Scholar