Vol. 67
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-05-02
A Single Pixel Millimeter-Wave Imaging System Based on Metamaterials
By
Progress In Electromagnetics Research Letters, Vol. 67, 111-115, 2017
Abstract
Based on metamaterials and compressive sensing theory, we design a single pixel millimeter-wave fast imaging system by a 1D aperture array. The aperture array is realized by a column of complementary electric-lc (cELC) units etched on amicrostrip transmission line. Each cELC unit resonates at a different frequency, where the energy is coupled from the aperture to free space. A sequence of random field patterns can be obtained by controlling geometric parameters of each cELCunit. We use the frequency as the index of measurement matrix which well satisfies the restricted isometry property (RIP) and is well suited for compressive sensing (CS). A prototype of CS imaging system operatingatKa-band (27-40 GHz) is fabricated which can detect a 5 cm * 5 cm object precisely at a distance of 50 cm.
Citation
Jiajun Bai, Qiang Chen, Shiling Yang, Zhansan Sun, and Yunqi Fu, "A Single Pixel Millimeter-Wave Imaging System Based on Metamaterials," Progress In Electromagnetics Research Letters, Vol. 67, 111-115, 2017.
doi:10.2528/PIERL17030902
References

1. Appleby, R., R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, P. Papakosta, A. H. Lettington, and D. A. Robertson, "Compact real-time (video rate) passive millimeter-wave imager," Proc. SPIE, Vol. 3703, 13-19, 1999.
doi:10.1117/12.353003

2. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geosci. Remote Sens. Mag., Vol. 1, No. 1, 6-43, 2013.
doi:10.1109/MGRS.2013.2248301

3. Chan, W.-L., K. Charan, and D. Takhar, "A single pixel terahertz imaging system based on compressed sensing," Appl. Phys. Lett., Vol. 93, No. 12, 2008.
doi:10.1063/1.2989126

4. Candes, E. and T. Tao, "Near optimal signal recovery from random projections," Universal Encoding Strategies, Vol. 52, No. 12, 5406-5425, 2006.

5. Hunt, J., T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, "Metamaterial apertures for computational imaging," Science, Vol. 339, No. 1, 310-313, 2013.
doi:10.1126/science.1230054

6. Lipworth, G. and A. Mrozack, "Metamaterial Apertures for coherent computational imaging on the physical layer," Optical Society of America, Vol. 30, No. 8, 2013.
doi:10.1364/JOSAA.30.001603

7. Lipworth, G. and J. Hunt, "Simulations of 2D metamaterial apertures for coherent computational imaging," IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, 2013.

8. Bai, J.-J., K. Ren, Q. Chen, L. Chen, G.-F. Zhang, and Y.-Q. Fu, "Flexible dual-frequency substrate integrated waveguide antenna based on metamaterial," IEEE International Conference on Signal Processing, Communications and Computing, 2015.