Vol. 68
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-06-03
A Portable Spectra Detection System for Ripeness Detection and Real-Finger Identification
By
Progress In Electromagnetics Research Letters, Vol. 68, 73-77, 2017
Abstract
A portable spectra detection system has been developed to enable reflection measurement. This system is mainly composed of spectrometer, LED source and five optical elements. The size of the optical system is about 126 mm × 72 mm × 30 mm. The system covers a range of 340 nm-820 nm, and the spectral resolution is 6.0 nm. Based on the detection system, two example applications for ripeness detection and real-finger identification are carried out to demonstrate the system performance. The detection time is less than 1 second, and a satisfactory agreement was observed between detection results and realistic situation.
Citation
Jun Xie, and Fuhong Cai, "A Portable Spectra Detection System for Ripeness Detection and Real-Finger Identification," Progress In Electromagnetics Research Letters, Vol. 68, 73-77, 2017.
doi:10.2528/PIERL17040103
References

1. Roggo, Y., P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, "A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies," J. Pharm. Biomed. Anal., Vol. 44, 683-700, 2007.
doi:10.1016/j.jpba.2007.03.023

2. Alander, J. T., V. Bochko, B. Martinkauppi, S. Saranwong, and T. Mantere, "A review of optical nondestructive visual and near-infrared methods for food quality and safety," International Journal of Spectroscopy, Vol. 2013, 36, 2013.
doi:10.1155/2013/341402

3. Xu, J., Y. T. Wang, and X. F. Liu, "A novel quantitative analysis method of three-dimensional fluorescence spectra for vegetable oils contents in edible blend oil," Optics and Spectroscopy, Vol. 118, 663-667, 2015.
doi:10.1134/S0030400X15040086

4. Evers, D. J., B. H. W. Hendriks, G. W. Lucassen, and T. J. M. Ruers, "Optical spectroscopy: Current advances and future applications incancer diagnostics and therapy," Future Oncology, Vol. 8, 307-320, 2012.
doi:10.2217/fon.12.15

5. Li, L., S. Liu, Z. Chen, et al. "Remote detection of the surface-enhanced Raman spectrum with the optical fiber nanoprobe," Optics and Spectroscopy, Vol. 116, 575-578, 2014.
doi:10.1134/S0030400X14040171

6. Das, A., A. Wahi, I. Kothari, and R. Raskar, "Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness," Natural Scientific Reports, Vol. 6, 32504, 2016.
doi:10.1038/srep32504

7. Bodria, L., M. Fiala, R. Guidetti, and R. Oberti, "Optical techniques to estimate the ripeness of red-pigmented fruits," Transactions of the Asae, Vol. 47, 815-820, 2004.
doi:10.13031/2013.16077

8. Zhu, Q., C. He, R. Lu, F. Mendozac, and H. Cen, "Ripeness evaluation of `Sun Bright’ tomato using optical absorption and scattering properties," Postharvest Biology and Technology, Vol. 103, 27-34, 2015.
doi:10.1016/j.postharvbio.2015.02.007

9. Zude-Sasse, M., I. Truppel, and B. Herold, "An approach to non-destructive apple fruit chlorophyll determination," Postharvest Biology and Technology, Vol. 25, 123-133, 2002.
doi:10.1016/S0925-5214(01)00173-9

10. Hong, L., Y. Wan, and A. Jain, "Fingerprint image enhancement: Algorithm and performance evaluation," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, 777-789, 1998.
doi:10.1109/34.709565