Vol. 68
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-06-07
Synthetic Aperture Radar Ship Detection Using Modifi Ed Gamma Fisher Metric
By
Progress In Electromagnetics Research Letters, Vol. 68, 85-91, 2017
Abstract
This article proposes a novel ship detection method for high-resolution SAR images. Our goal is to look at this question from a information geometry point of view. The method consists of two steps: construction of revised metric and Riemann structure, and extraction of targets. For the first step of the process, a revised metric is introduced on Gamma 2-manifold. We construct a special Riemannian structure by using the proposed metric. For the second step, the regions of interest (ROIs) are extracted out based on the Riemann structure. Experimental results of the detection method on SAR images show that the algorithm presented is effective.
Citation
Meng Yang, "Synthetic Aperture Radar Ship Detection Using Modifi Ed Gamma Fisher Metric," Progress In Electromagnetics Research Letters, Vol. 68, 85-91, 2017.
doi:10.2528/PIERL17040803
References

1. Isernia, T., A. Massa, A. F. Morabito, and P. Rocca, "On the optimal synthesis of phase-only reconfigurable antenna arrays," European Conf. Antennas and Propagation, 2074-2077, 2011.

2. Qin, F., S. Gao, Q. Luo, C. Mao, C. Gu, G. Wei, J. Xu, J. Li, C. Wu, K. Zheng, and S. Zheng, "A simple low-cost shared-aperture dual-band dual-polarized high-gain antenna for synthetic aperture radars," IEEE Trans. Antennas Propagation, Vol. 64, No. 7, 2914-2922, 2016.
doi:10.1109/TAP.2016.2559526

3. Marino, A. and I. Hajnsekand, "Statistical tests for a ship detector based on the polarimetric notch filter," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 8, 4578-4595, 2015.
doi:10.1109/TGRS.2015.2402312

4. Touzi, R., J. Hurley, and P. Vachon, "Optimization of the degree of polarization for enhanced ship detection using polarimetric RADARSAT-2," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 10, 5403-5424, 2015.
doi:10.1109/TGRS.2015.2422134

5. Zilman, G., A. Zapolski, and M. Marom, "On detectability of a ship’s Kelvin wake in simulated SAR images of rough sea surface," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 2, 609-619, 2015.
doi:10.1109/TGRS.2014.2326519

6. Tao, D., S. Anfinsen, and C. Brekke, "Robust CFAR detector based on truncated statistics in multiple-target situations," IEEE Trans. Geosci. Remote Sens., Vol. 54, No. 1, 117-134, 2016.
doi:10.1109/TGRS.2015.2451311

7. Schwegmann, C., W. Kleynhans, and B. Salmon, "Manifold adaptation for constant false alarm rate ship detection in south African oceans," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 8, No. 7, 3329-3337, 2015.
doi:10.1109/JSTARS.2015.2417756

8. Schwegmann, C., W. Kleynhans, and B. Salmon, "Synthetic aperture radar ship detection using Haar-like features," IEEE Geosci. Remote Sens. Lett., Vol. 14, No. 2, 154-158, 2017.
doi:10.1109/LGRS.2016.2631638

9. Arwini, K. A. and C. T. J. Dodson, "Information Geometry --- Near Randomness and Near Independence," Springer-Verlag, 2008.

10. Nielsen, F. and R. Bhatia, Matrix Information Geometry, Springer-Verlag, Heidelberg, 2013.
doi:10.1007/978-3-642-30232-9

11. Amari, S., Information Geometry and Its Application, Springer, Tokyo, 2016.
doi:10.1007/978-4-431-55978-8

12. Forbes, C., M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, Wiley, New York, 2010.
doi:10.1002/9780470627242