1. Minyeong, Y., H. K. Kim, and S. Lim, "Angular- and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology," IEEE Antennas Wireless Propag. Lett., Vol. 15, 414-417, 2016.
doi:10.1109/LAWP.2015.2448720 Google Scholar
2. Liu, Y., K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2016.
doi:10.1109/TAP.2015.2497352 Google Scholar
3. Han, T., X. Y. Cao, J. Gao, and Y. Zhao, "Design of shared aperture metasurface and its application on improving radiation and scattering performance of the waveguide slot antenna," Journal of Air Force Engineering University, Vol. 18, No. 3, 50-56, 2017 (in Chinese). Google Scholar
4. Li, H. P., G. M. Wang, J. G. Liang, and X. J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.
doi:10.2528/PIER16012011 Google Scholar
5. Yang, W. C., K. W. Tam, W. W. Choi, W. Q. Che, and H. T. Hui, "Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6206-6216, 2014.
doi:10.1109/TAP.2014.2361130 Google Scholar
6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
7. Ustun, K. and G. T. Sayan, "Wideband long wave infrared metamaterial absorbers based on silicon nitride," J. Appl. Phys., Vol. 120, 203101, 2016.
doi:10.1063/1.4968014 Google Scholar
8. Zuo, W. Q., Y. Yang, X. X. He, D. W. Zhan, and Q. F. Zhang, "A miniaturized metamaterial absorber for ultrahigh-frequency RFID system," IEEE Antennas Wireless Propag. Lett., Vol. 16, 329-332, 2017.
doi:10.1109/LAWP.2016.2574885 Google Scholar
9. Ni, X. J., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband Light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2012.
doi:10.1126/science.1214686 Google Scholar
10. Kandasamy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "Low-RCS and polarizationreconfigurable antenna using cross-slot-based metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1638-1641, 2015.
doi:10.1109/LAWP.2015.2415585 Google Scholar
11. Chen, W. G., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2636-2645, 2015.
doi:10.1109/TAP.2015.2414440 Google Scholar
12. Song, Y. C., J. Ding, C. J. Guo, Y. H. Ren, and J. K. Zhang, "Ultra-broadband backscatter radar cross section reduction based on polarization-insensitive metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 329-331, 2016.
doi:10.1109/LAWP.2015.2443853 Google Scholar
13. Paquay, M., J. C. Iriarte, and Ederra, "Thin AMC structure for radar cross-section reduction," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306 Google Scholar
14. Galarregui, J. C. I., A. T. Pereda, J. L. M. Falc´on, I. Ederra, R. Gonzalo, and P. Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6136-6143, 2013.
doi:10.1109/TAP.2013.2282915 Google Scholar
15. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, No. 10, e218, 2014.
doi:10.1038/lsa.2014.99 Google Scholar
16. Zhao, Y., X. Y. Cao, J. Gao, Y. Sun, et al. "Broadband diffusion metasurface based on a single anisotropic element and optimized by the simulated annealing algorithm," Scientific Reports, Vol. 6, 23896, 2016.
doi:10.1038/srep23896 Google Scholar
17. Yan, X., L. J. Liang, J. Yang, et al. "Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface," Optics Express, Vol. 23, No. 22, 29128-29137, 2015.
doi:10.1364/OE.23.029128 Google Scholar
18. Zhang, H., Y. Lu, J. X. Su, Z. R. Li, J. B. Liu, and Y. Q. Yang, "Coding diffusion metasurface for ultra-wideband RCS reduction," Electronics Letters, Vol. 53, No. 3, 187-189, 2017.
doi:10.1049/el.2016.3956 Google Scholar
19. Zhao, J., Q. Cheng, X. K. Wang, et al. "Controlling the bandwidth of terahertz low-scattering metasurfaces," Adv. Optical Mater., Vol. 4, No. 11, 1773-1779, 2016.
doi:10.1002/adom.201600202 Google Scholar
20. Li, W. Q., X. Y. Gao, J. Cao, Q. Yang, Y. Zhao, Z. Zhang, and C. H. Zhang, "A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics," Acta Phys. Sin., Vol. 63, No. 12, 124101, 2014 (in Chinese). Google Scholar
21. Sievenpiper, D., L. J. Zhang, R. F. J. Broas, N. G. Alex’opolous, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001 Google Scholar
22. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Trans. Antennas Propag., Vol. 51, 2296-2303, 2003.
doi:10.1109/TAP.2003.816352 Google Scholar
23. Wang, K., J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, "Broadband and broad-angle lowscattering metasurface based on hybrid optimization algorithm," Scientific Reports, Vol. 4, 5935, 2014. Google Scholar