1. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.
doi:10.2528/PIER11051601 Google Scholar
2. Saleem, R. and A. K. Brown, "Empirical miniaturization analysis of inverse parabolic step sequence based UWB antennas," Progress In Electromagnetics Research, Vol. 114, 369-381, 2011.
doi:10.2528/PIER11012809 Google Scholar
3. Chen, D. and C. H. Cheng, "A novel compact ultra-wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 343-349, 2009.
doi:10.2528/PIER09062306 Google Scholar
4. Andres-Garcia, B., L. E. Garcia-Munoz, D. Segovia-Vargas, I. Camara-Mayorga, and R. Gusten, "Ultrawideband antenna excited by a photomixer for terahertz band," Progress In Electromagnetics Research, Vol. 114, 1-15, 2011.
doi:10.2528/PIER11012513 Google Scholar
5. Iqbal, A., O. A. Saraereh, and S. K. Jaiswal, "Maple leaf shaped UWB monopole antenna with dual band notch functionality," Progress In Electromagnetics Research C, Vol. 71, 169-175, 2017.
doi:10.2528/PIERC17010801 Google Scholar
6. Azaro, R., F. De Natale, M. Donelli, E. Zeni, and A. Massa, "Synthesis of a prefractal dualband monopolar antenna for GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 361-364, 2006.
doi:10.1109/LAWP.2006.880695 Google Scholar
7. Azaro, R., G. Boato, M. Donelli, A. Massa, and E. Zeni, "Design of a prefractal monopolar antenna for 3.4–3.6GHz Wi-Max band portable devices," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 4, 116-119, 2006.
doi:10.1109/LAWP.2006.872427 Google Scholar
8. Caorsi, S., F. De Natale, M. Donelli, D. Franceschini, and A. Massa, "A versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves And Applications, Vol. 18, No. 11, 1533-1548, 2004.
doi:10.1163/1569393042954893 Google Scholar
9. Massa, A., M. Donelli, F. De Natale, S. Caorsi, and A. Lommi, "Planar antenna array control with genetic algorithms and adaptive array theory," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2919-2924, 2004.
doi:10.1109/TAP.2004.837523 Google Scholar
10. Ray, K. P. and S. Tiwari, "Ultra wideband printed hexagonal monopole antennas," IET Microw. Antennas Propag., Vol. 4, No. 4, 437-445, 2010.
doi:10.1049/iet-map.2008.0201 Google Scholar
11. Bai, J., S. Shi, and D. Prather, "Modified compact antipodal Vivaldi antenna for 4–50 GHz UWB application," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 1051-1057, 2011.
doi:10.1109/TMTT.2011.2113970 Google Scholar
12. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
doi:10.2528/PIER08040601 Google Scholar
13. Langley, J. D. S., P. S. Hall, and P. Newham, "Novel ultrawide bandwidth Vivaldi antenna with low cross-polarization," IEE Electronics Lett., Vol. 29, No. 23, 2004-2005, 1993.
doi:10.1049/el:19931336 Google Scholar
14. Licul, S., J. A. N. Noronha, W. A. Davis, D. G. Sweeney, C. R. Anderson, and T. M. Bielawa, "A parametric study of timedomain characteristics of possible UWB antenna architectures," Proc. of IEEE Vehicular Technology Conference (VTC 2003), Vol. 5, 3110-3114, 2003. Google Scholar
15. Mohammadian, A. H., A. Rajkotia, and S. S. Soliman, "Characterization of UWB transmit-receive antenna system," Proc. of Ultra Wideband Systems and Technologies, 157-161, 2003. Google Scholar