Vol. 77
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-07-24
Loop Antennas with Uniform Current in Close Proximity to the Earth: Canonical Solution to the Surface-to-Surface Propagation Problem
By
Progress In Electromagnetics Research B, Vol. 77, 57-69, 2017
Abstract
In a recent study, the classical problem of a large circular loop antenna carrying uniform current and situated at the Earth's surface has been revisited, with the scope to derive a totally analytical explicit expression for the radial distribution of the generated magnetic field. Yet, the solution arising from the study exhibits two major drawbacks. First, it describes the vertical magnetic field component only. Second, it is a valid subject to the quasi-static field assumption, which limits its applicability to the low-frequency range. The purpose of the present work is to provide the exact canonical solution to the problem, describing all the generated electromagnetic field components and valid in both the quasi-static and non-quasi-static frequency regions. These two features constitute an improvement with respect to the preceding solution. The canonical solution, which is obtained by reducing the field integrals to combinations of known Sommerfeld integrals, is seen to be also advantageous over the previous numerical and analytical-numerical approaches, since its usage takes negligible computation time. Numerical simulations are performed to show the accuracy of the obtained field expressions and to investigate the behavior of the above surface ground- and lateral-wave contributions to the fields in a wide frequency range. It is shown that in the near-zone the two waves do not predominate over each other, while the effect of the lateral wave becomes negligible only when the source-receiver distance is far greater than the skin depth in the Earth.
Citation
Mauro Parise, Marco Muzi, and Giulio Antonini, "Loop Antennas with Uniform Current in Close Proximity to the Earth: Canonical Solution to the Surface-to-Surface Propagation Problem," Progress In Electromagnetics Research B, Vol. 77, 57-69, 2017.
doi:10.2528/PIERB17042005
References

1. Foster, D., "Loop antennas with uniform current," Proceedings of the IRE, Vol. 32, 603-607, 1944.
doi:10.1109/JRPROC.1944.233062        Google Scholar

2. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., John Wiley & Sons, 1997.

3. Werner, D. H., "An exact integration procedure for vector potentials of thin circular loop antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, 157-165, 1996.
doi:10.1109/8.481642        Google Scholar

4. Singh, N. P. and T. Mogi, "Electromagnetic response of a large circular loop source on a layered earth: A new computation method," Pure and Applied Geophysics, Vol. 162, 181-200, 2005.
doi:10.1007/s00024-004-2586-2        Google Scholar

5. Wait, J. R., "Fields of a horizontal loop antenna over a layered half-space," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 10, 1301-1311, 2012.        Google Scholar

6. Palacky, G. J., "Resistivity characteristics of geologic targets," Electromagnetic Methods in Applied Geophysics, Vol. 1, 52-129, edited by M. N. Nabighian, SEG, Tulsa, Oklahoma, 1988.        Google Scholar

7. Ward, S. H. and G. W. Hohmann, "Electromagnetic theory for geophysical applications," Electromagnetic Methods in Applied Geophysics, Theory --- Volume 1, 131-308, M. N. Nabighian (ed.), SEG, Tulsa, Oklahoma, 1988.        Google Scholar

8. Parise, M., "Efficient computation of the surface fields of a horizontal magnetic dipole located at the air-ground interface," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 29, 653-664, 2016.
doi:10.1002/jnm.2120        Google Scholar

9. Overfelt, P., "Near fields of the constant current thin circular loop antenna of arbitrary radius," IEEE Transactions on Antennas and Propagation, Vol. 44, 166-171, 1996.
doi:10.1109/8.481643        Google Scholar

10. Parise, M., "An exact series representation for the EM field from a circular loop antenna on a lossy half-space," IEEE Antennas and Wireless Prop. Letters, Vol. 13, 23-26, 2014.
doi:10.1109/LAWP.2013.2296149        Google Scholar

11. Zhdanov, M. S., Geophysical Electromagnetic Theory and Methods, Elsevier, 2009.

12. Parise, M., "Full-wave analytical explicit expressions for the surface fields of an electrically large horizontal circular loop antenna placed on a layered ground," IET Microwaves, Antennas & Propagation, Vol. 11, 929-934, 2017.
doi:10.1049/iet-map.2016.0590        Google Scholar

13. Parise, M., "On the use of cloverleaf coils to induce therapeutic heating in Tissues," Journal of Electromagnetic Waves and Applications, Vol. 25, 1667-1677, 2011.
doi:10.1163/156939311797164945        Google Scholar

14. Boerner, D. E., "Controlled source electromagnetic deep sounding: Theory, results and correlation with natural source results," Surveys in Geophysics, Vol. 13, No. 4–5, 435-488, 1992.
doi:10.1007/BF01903486        Google Scholar

15. Shastri, N. L. and H. P. Patra, "Multifrequency sounding results of laboratory simulated homogeneous and two-Layer earth models," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 6, 749-752, 1988.
doi:10.1109/36.7706        Google Scholar

16. Parise, M., "Quasi-static vertical magnetic field of a large horizontal circular loop located at the earth's surface," Progress In Electromagnetics Research Letters, Vol. 62, 29-34, 2016.
doi:10.2528/PIERL16053003        Google Scholar

17. Kong, J. A., L. Tsang, and G. Simmons, "Geophysical subsurface probing with radio-frequency interferometry," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 4, 616-620, 1974.
doi:10.1109/TAP.1974.1140858        Google Scholar

18. Singh, N. P. and T. Mogi, "Inversion of large loop transient electromagnetic data over layered earth models," Jour. Fac. Sci Hokkaido Univ. Ser. VII, Vol. 12, No. 1, 41-54, 2003.        Google Scholar

19. Farquharson, C. G., D. W. Oldenburg, and P. S. Routh, "Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity," Geophysics, Vol. 68, No. 6, 1857-1869, 2003.
doi:10.1190/1.1635038        Google Scholar

20. Guptasarma, D. and B. Singh, "New digital linear filters for Hankel J0 and J1 transforms," Geophysical Prospecting, Vol. 45, No. 5, 745-762, 1997.
doi:10.1046/j.1365-2478.1997.500292.x        Google Scholar

21. Singh, N. P. and T. Mogi, "Effective skin depth of EM fields due to large circular loop and electric dipole sources," Earth Planets Space, Vol. 55, 301-313, 2003.
doi:10.1186/BF03351764        Google Scholar

22. Kong, F. N., "Hankel transform filters for dipole antenna radiation in a conductive medium," Geophysical Prospecting, Vol. 55, No. 1, 83-89, 2007.
doi:10.1111/j.1365-2478.2006.00585.x        Google Scholar

23. Parise, M., "A study on energetic efficiency of coil antennas used for RF diathermy," IEEE Antennas and Wireless Prop. Letters, Vol. 10, 385-388, 2011.
doi:10.1109/LAWP.2011.2148190        Google Scholar

24. Alford, A. and A. Kandoian, "Ultrahigh-frequency loop antennas," Electrical Engineering, Vol. 59, 843-848, 1940.
doi:10.1109/EE.1940.6435249        Google Scholar

25. Parise, M., "On the surface fields of a small circular loop antenna placed on plane stratified earth," International Journal of Antennas and Propagation, Vol. 2015, 1-8, 2015.
doi:10.1155/2015/187806        Google Scholar

26. Parise, M., "Exact electromagnetic field excited by a vertical magnetic dipole on the surface of a lossy half-space," Progress In Electromagnetics Research B, Vol. 23, 69-82, 2010.
doi:10.2528/PIERB10060707        Google Scholar

27. Tai, C., Dyadic Green functions in electromagnetic theory, IEEE Press, 1994.

28. Mosig, J. R., R. C. Hall, and F. E. Gardiol, "Numerical analysis of microstrip patch antennas," Handbook of Microstrip Antennas, J. R. James and P. S. Hall (eds.), Peter Peregrinus Ltd., London, UK, 1989.        Google Scholar

29. Watson, G. N., "A Treatise on the Theory of Bessel Functions," Cambridge University Press, 1994.        Google Scholar

30. Erdelyi, A., Tables of Integral Transforms — Vol. 2, McGraw-Hill, 1954.

31. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, 1964.

32. Parise, M., "Exact EM field excited by a short horizontal wire antenna lying on a conducting soil," AEU-International Journal of Electronics and Communications, Vol. 70, 676-680, 2016.
doi:10.1016/j.aeue.2016.02.004        Google Scholar

33. Parise, M., "Second-order formulation for the quasi-static field from a vertical electric dipole on a lossy half-space," Progress In Electromagnetics Research, Vol. 136, 509-521, 2013.
doi:10.2528/PIER12112508        Google Scholar

34. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 2007.

35. Davis, J. L. and A. P. Annan, "Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy," Geophysical Prospecting, Vol. 37, 531-551, 1989.
doi:10.1111/j.1365-2478.1989.tb02221.x        Google Scholar

36. Daniels, D. J., Ground Penetrating Radar, Institution of Engineering and Technology, 2004.
doi:10.1049/PBRA015E

37. Parise, M., "An exact series representation for the EM field from a vertical electric dipole on an imperfectly conducting half-space," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 8, 932-942, 2014.
doi:10.1080/09205071.2014.897653        Google Scholar

38. Telford, W. M., L. P. Geldart, and L. E. Sherif, Applied Geophysics, Cambridge University Press, 1990.
doi:10.1017/CBO9781139167932