Vol. 59
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-30
An Optimized PLRC-FDTD Model of Wave Propagation in Anisotropic Magnetized Plasma
By
Progress In Electromagnetics Research M, Vol. 59, 25-31, 2017
Abstract
Numerical dispersion is the main error source of the finite-difference time-domain (FDTD) method. In this paper, an optimized piecewise linear recursive convolution (PLRC) FDTD method with low numerical dispersion is presented first time for electromagnetic-wave propagation in anisotropic magnetized plasma. An optimized difference item which can achieve better approximation to the partial differential operator from transform domain is induced in this algorithm which decreases numerical dispersion. The item can be regarded as adding a correcting coefficient to conventional central difference format. And it is easy for programming and implementation. Numerical examples of electromagnetic pulse wave propagating in plasma demonstrate that the proposed optimized PLRC-FDTD method can not only reduce the numerical dispersion, but also improve precision, saving computational memory and computational time compared with the conventional PLRC-FDTD method. Same accuracy can be achieved when the spatial mesh size for the optimized PLRC-FDTD method is 2 times coarser as that in the conventional PLRC-FDTD method, corresponding to the computation time consumed in the optimized method is only 1/2 as that in the conventional one.
Citation
Jinchao Ding, Zhiqin Zhao, Yue Yang, Yulang Liu, and Zai-Ping Nie, "An Optimized PLRC-FDTD Model of Wave Propagation in Anisotropic Magnetized Plasma," Progress In Electromagnetics Research M, Vol. 59, 25-31, 2017.
doi:10.2528/PIERM17050903
References

1. Yee, K., "A numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Namiki, T., "A new FDTD algorithm based on alternating direction implicit method," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 10, 2003-2007, 1999.
doi:10.1109/22.795075

3. Liu, Q., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microw Opt. Technol. Lett., Vol. 15, No. 3, 158-165, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3

4. Krumpholz, M. and L. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 4, 555-571, 1996.
doi:10.1109/22.491023

5. Shlager, K. and J. Schneider, "Comparison of the dispersion properties of several low-dispersion finite-difference time-domain algorithms," IEEE Trans. Antennas Propag., Vol. 51, No. 3, 642-653, 2003.
doi:10.1109/TAP.2003.808532

6. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag., Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431

7. Chen, Q., M. Katsurai, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1739-1746, 1998.
doi:10.1109/8.736632

8. Alsunaidi, M. A. and A. A. Al-Jabr, "A general ADE-FDTD algorithm for the simulation of dispersive structures," IEEE Photon Technol. Lett., Vol. 21, No. 12, 817-819, 2009.
doi:10.1109/LPT.2009.2018638

9. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag., Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882

10. Young, J. L., "A higher order FDTD method for EM propagation in a collisionless cold plasma," IEEE Trans. Antennas Propag., Vol. 44, No. 9, 1283-1289, 1996.
doi:10.1109/8.535387

11. Prokopidis, K. P. and T. D. Tsiboukis, "Higher-order FDTD (2, 4) scheme for accurate simulations in lossy dielectrics," Electron. Lett., Vol. 39, No. 11, 835-836, 2003.
doi:10.1049/el:20030545

12. Prokopidis, K. P., E. P. Kosmidou, and T. D. Tsiboukis, "An FDTD algorithm for wave propagation in dispersive media using higher-order schemes," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1171-1194, 2004.
doi:10.1163/1569393042955306

13. Jung, I., I.-Y. Oh, Y. Hong, and J.-G. Yook, "Optimized higher order 3-D (2, 4) FDTD scheme for isotropic dispersion in plasma," Asia-Pacific Micro Conference Proceed, 2013.

14. Lee, J. H. and D. K. Kalluri, "Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma," IEEE Trans. Antennas Propag., Vol. 47, No. 7, 1146-1151, 1999.
doi:10.1109/8.785745

15. Liu, S., J. Mo, and N. Yuan, "Piecewise linear current density recursive convolution FDTD implementation for anisotropic magnetized plasmas," IEEE Microw Wireless Compon. Lett., Vol. 14, No. 5, 222-224, 2004.
doi:10.1109/LMWC.2004.827844

16. Zygiridis, T. T. and T. O. Tsiboukis, "Low-dispersion algorithms based on the higher order (2, 4) FDTD method," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 2004.
doi:10.1109/TMTT.2004.825695

17. Fei, X., T. X. Hong, and Z. X. Jing, "3-D optimal finite difference time domain method," Journ. Micro., Vol. 22, No. 5, 7-10, 2006.

18. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, 2005.

19. Fei, X., T. X. Hong, and Z. X. Jing, "The construction of low-dispersive FDTD on hexagon," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3697-3703, 2005.
doi:10.1109/TAP.2005.858595