1. Yee, K., "A numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
2. Namiki, T., "A new FDTD algorithm based on alternating direction implicit method," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 10, 2003-2007, 1999.
doi:10.1109/22.795075 Google Scholar
3. Liu, Q., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microw Opt. Technol. Lett., Vol. 15, No. 3, 158-165, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3 Google Scholar
4. Krumpholz, M. and L. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 4, 555-571, 1996.
doi:10.1109/22.491023 Google Scholar
5. Shlager, K. and J. Schneider, "Comparison of the dispersion properties of several low-dispersion finite-difference time-domain algorithms," IEEE Trans. Antennas Propag., Vol. 51, No. 3, 642-653, 2003.
doi:10.1109/TAP.2003.808532 Google Scholar
6. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag., Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431 Google Scholar
7. Chen, Q., M. Katsurai, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1739-1746, 1998.
doi:10.1109/8.736632 Google Scholar
8. Alsunaidi, M. A. and A. A. Al-Jabr, "A general ADE-FDTD algorithm for the simulation of dispersive structures," IEEE Photon Technol. Lett., Vol. 21, No. 12, 817-819, 2009.
doi:10.1109/LPT.2009.2018638 Google Scholar
9. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag., Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882 Google Scholar
10. Young, J. L., "A higher order FDTD method for EM propagation in a collisionless cold plasma," IEEE Trans. Antennas Propag., Vol. 44, No. 9, 1283-1289, 1996.
doi:10.1109/8.535387 Google Scholar
11. Prokopidis, K. P. and T. D. Tsiboukis, "Higher-order FDTD (2, 4) scheme for accurate simulations in lossy dielectrics," Electron. Lett., Vol. 39, No. 11, 835-836, 2003.
doi:10.1049/el:20030545 Google Scholar
12. Prokopidis, K. P., E. P. Kosmidou, and T. D. Tsiboukis, "An FDTD algorithm for wave propagation in dispersive media using higher-order schemes," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1171-1194, 2004.
doi:10.1163/1569393042955306 Google Scholar
13. Jung, I., I.-Y. Oh, Y. Hong, and J.-G. Yook, "Optimized higher order 3-D (2, 4) FDTD scheme for isotropic dispersion in plasma," Asia-Pacific Micro Conference Proceed, 2013. Google Scholar
14. Lee, J. H. and D. K. Kalluri, "Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma," IEEE Trans. Antennas Propag., Vol. 47, No. 7, 1146-1151, 1999.
doi:10.1109/8.785745 Google Scholar
15. Liu, S., J. Mo, and N. Yuan, "Piecewise linear current density recursive convolution FDTD implementation for anisotropic magnetized plasmas," IEEE Microw Wireless Compon. Lett., Vol. 14, No. 5, 222-224, 2004.
doi:10.1109/LMWC.2004.827844 Google Scholar
16. Zygiridis, T. T. and T. O. Tsiboukis, "Low-dispersion algorithms based on the higher order (2, 4) FDTD method," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 2004.
doi:10.1109/TMTT.2004.825695 Google Scholar
17. Fei, X., T. X. Hong, and Z. X. Jing, "3-D optimal finite difference time domain method," Journ. Micro., Vol. 22, No. 5, 7-10, 2006. Google Scholar
18. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, 2005.
19. Fei, X., T. X. Hong, and Z. X. Jing, "The construction of low-dispersive FDTD on hexagon," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3697-3703, 2005.
doi:10.1109/TAP.2005.858595 Google Scholar