1. Perry, M. D. and G. Mourou, "Terawatt to petawatt subpicosecond lasers," Science, Vol. 264, 917-924, 1994.
doi:10.1126/science.264.5161.917
2. Gibbon, P., Short Pulse Laser Interactions with Matter: An Introduction, College Press, London, 2005.
doi:10.1142/p116
3. Park, H. S., et al., "High-energy K alpha radiography using high-intensity, short-pulse lasers," Phys. Plasmas, Vol. 13, 056309, 2006.
doi:10.1063/1.2178775
4. Kodama, R., et al., "Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition," Nature, Vol. 412, 798-802, 2001.
doi:10.1038/35090525
5. Atzeni, S. and J. Meyer-tar-Vehn, Inertial Fusion-beam Plasma Interaction, Hydrodynamic, Dense Plasma Physics, Clarendon, Oxford, 2003.
6. Tabak, M., et al., "Ignition and high-gain with ultrapowerful lasers," Phys. Plasmas, Vol. 1, 1626-1634, 1994.
doi:10.1063/1.870664
7. Weibel, E. S., "Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution," Phys. Rev. Lett., Vol. 2, 83-84, 1959.
doi:10.1103/PhysRevLett.2.83
8. Green, J. S., et al., "Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas," Phys. Rev. Lett., Vol. 100, 015003, 2008.
doi:10.1103/PhysRevLett.100.015003
9. Kodama, R., et al., "Plasma devices to guide and collimate a high density of MeV electrons," Nature, Vol. 432, 1005-1008, 2004.
doi:10.1038/nature03133
10. Lancaster, K. L., et al., "Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 × 1020 W cm(-2)," Phys. Rev. Lett., Vol. 98, 125002, 2007.
doi:10.1103/PhysRevLett.98.125002
11. Santos, J. J., et al., "Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics," Phys. Rev. Lett., Vol. 89, 207-213, 2002.
doi:10.1103/PhysRevLett.89.025001
12. Sentoku, Y., et al., "Magnetic instability by the relativistic laser pulses in overdense plasmas," Phys. Plasmas, Vol. 7, 689-695, 2000.
doi:10.1063/1.873853
13. Stephens, R. B., et al., "K-alpha fluorescence measurement of relativistic electron transport in the context of fast ignition," Phys. Rev. E, Vol. 69, 039901, 2004.
doi:10.1103/PhysRevE.69.066414
14. Robinson, A. P. L., M. Sherlock, and P. A. Norreys, "Artificial collimation of fast-electron beams with two laser pulses," Phys. Rev. Lett., Vol. 100, 025002, 2008.
doi:10.1103/PhysRevLett.100.025002
15. Bell, A. R. and R. J. Kingham, "Resistive collimation of electron beams in laser-produced plasmas," Phys. Rev. Lett., Vol. 91, 035003, 2003.
doi:10.1103/PhysRevLett.91.035003
16. McKenna, P., et al., "Effect of lattice structure on energetic electron transport in solids irradiated by ultraintense laser pulses," Phys. Rev. Lett., Vol. 106, 185004, 2011.
doi:10.1103/PhysRevLett.106.185004
17. Ramakrishna, B., et al., "Laser-driven fast electron collimation in targets with resistivity boundary," Phys. Rev. Lett., Vol. 105, 135001, 2010.
doi:10.1103/PhysRevLett.105.135001
18. Mishra, S. K., et al., "Stabilization of beam-weibel instability by equilibrium density ripples," Phys. Plasmas, Vol. 21, 012108, 2014.
doi:10.1063/1.4862175
19. Chatterjee, G., et al., "Macroscopic transport of mega-ampere electron currents in aligned carbon-nanotube arrays," Phys. Rev. Lett., Vol. 108, 235005, 2012.
doi:10.1103/PhysRevLett.108.235005
20. Spitzer, L. and R. Harm, "Transport phenomena in a completely ionized gas," Phys. Rev., Vol. 89, 977-981, 1953.
doi:10.1103/PhysRev.89.977