Vol. 69
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-08-02
Ultra Wide Bandwidth High Gain Vivaldi Antenna for Wireless Communications
By
Progress In Electromagnetics Research Letters, Vol. 69, 105-111, 2017
Abstract
In this paper an ultra-wide bandwidth double-layered Vivaldi antenna (DLVA) integrated in Radome housing is proposed. First the conventional Vivaldi antenna is designed with bandwidth extended from 1.8 to 6 GHz at VSWR (3:1). Then for wider bandwidth, two slots are etched in the antenna ground plane to extend the antenna bandwidth from 1.7 to 9 GHz. For more improvement in antenna bandwidth, circular slots as electromagnetic band-gap structure (EBG) are etched to further extend the antenna bandwidth from 1.45 to 10 GHz. For gain enhancement double layers of Vivaldi antenna ground plane are designed with the same feeding line to reach 29 dBi peak. High frequency structure simulator (HFSS) ANSYS is used to design to simulated all the design steps. The proposed antenna is fabricated and measured. Finally, DLVA is integrated inside the Radome to improve the antenna gain and protect the proposed antenna from environmental factors. The antenna is fabricated and tested, and a good agreement between simulated and measured results is found.
Citation
Dalia Mohammed Nasha Elsheakh, Nermeen A. Eltresy, and Esmat A. F. Abdallah, "Ultra Wide Bandwidth High Gain Vivaldi Antenna for Wireless Communications," Progress In Electromagnetics Research Letters, Vol. 69, 105-111, 2017.
doi:10.2528/PIERL17060507
References

1. Bharti, P. K., "High gain Vivaldi antenna for radar and microwave imaging applications," International Journal of Signal Processing Systems, Vol. 3, No. 1, 35-39, 2015.

2. Hood, A. Z., T. Karacolak, and E. Topsakal, "A small antipodal Vivaldi antenna for ultrawide-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 656-660, 2008.
doi:10.1109/LAWP.2008.921352

3. Ma, T. G. and S. K. Jeng, "A printed dipole antenna with tapered slot feed for ultrawide-band applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3833-3836, 2005.
doi:10.1109/TAP.2005.858819

4. Acedo, E., E. Garcia, V. Gonzalez-Posadas, J. L. VazquezRoy, R. Maaskant, and D. Segovia, "Study and design of a differentially-fed tapered slot antenna array," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 1, 68-78, 2010.
doi:10.1109/TAP.2009.2036193

5. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
doi:10.2528/PIER08040601

6. Alhawari, A. R., A. I. Smail, M. A. Mahdi, and R. S. A. R. Abdullah, "Antipodal Vivaldi antenna performance booster exploiting snug-in negative index metamaterial," Progress In Electromagnetics Research, Vol. 27, 265-279, 2012.
doi:10.2528/PIERC12012906

7. Bayat, A. and R. Mirzakhani, "A parametric study and design of the balanced antipodal Vivaldi antenna (BAVA)," PIERS Proceedings, 778-782, Moscow, Russia, August 19-23, 2012.

8. Agahi, M. H. H., H. L. Abiri, and F. Mohajeri, "Investigation of a new idea for antipodal Vivaldi antenna design," International Journal of Computer and Electrical Engineering, Vol. 3, No. 2, 1793-8163, 2011.

9. Narbudowicz, A., M. John, and X. Bao, "Vivaldi array for generation of UWB circular polarization," IEE Anten. and Propagat. Society International Symposium (APSURSI), Chicago, IL, USA, 2012.

10. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844

11. Mehdipour, A., K. Mohammadpour-Aghdam, and R. Faraji-Dana, "Complete dispersion analysis of Vivaldi antenna for ultra wideband applications," Progress In Electromagnetics Research, Vol. 77, 85-96, 2007.
doi:10.2528/PIER07072904

12. Deng, C., W. Chen, Z. Zhang, L. Yue, and Z. Feng, "Generation of OAM radio waves using circular Vivaldi antenna array," International Journal of Antennas and Propagation, Vol. 2013, 1-8, 2013.

13. Bitchikh, M. and F. Ghanem, "A four bandwidth-resolution UWB antipodal Vivaldi antenna," Progress In Electromagnetics Research M, Vol. 53, 121-129, 2017.
doi:10.2528/PIERM16111602

14. Etesami, F., S. Khorshidi, S. Shahcheraghi, and A. Yahaghi, "Improvement of radiation characteristics of balanced antipodal Vivaldi antenna using transformation optics," Progress In Electromagnetics Research M, Vol. 56, 189-196, 2017.
doi:10.2528/PIERM17013102

15. Liu, C., A. Yan, C. Yu, and T. Xu, "Improvement on a 2×2 elements high-gain circularly polarized antenna array," International Journal of Antennas and Propagation, Vol. 2015, 1-8, 2015.

16. Saraereh, O. A., "A multiband and omnidirectional, CPW-fed single-layer based dual tapered-slot antenna," Progress In Electromagnetics Research C, Vol. 70, 183-191, 2016.
doi:10.2528/PIERC16112211