Vol. 72
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-12-01
A Compact Dielectric-Filled Slotted Cavity MIMO Antenna
By
Progress In Electromagnetics Research Letters, Vol. 72, 17-22, 2018
Abstract
This paper presents a compact slotted MIMO cube antenna operating at 5.8 GHz, consisting of three orthogonal slots, each with a distinct main direction of radiation. Each slot produces linear polarization enabling the structure to radiate three orthogonal polarizations. This provides spatial diversity which helps mitigating the effects of multipath propagation and enhances the diversity gain. The cube is filled with a dielectric with a relative permittivity, εr thus reducing the minimum dimension of the cube by a factor of 1/√εr . The antenna has a return loss of 20 dB and a coupling of less than -26 dB between the ports. This paper describes the principle operation as well as the design and manufacturing process of the proposed antenna.
Citation
Soumya Sheel, and Jacob Carl Coetzee, "A Compact Dielectric-Filled Slotted Cavity MIMO Antenna," Progress In Electromagnetics Research Letters, Vol. 72, 17-22, 2018.
doi:10.2528/PIERL17062910
References

1. Getu, B. N. and J. B. Andersen, "The MIMO cube — A compact MIMO antenna," IEEE Trans. Wireless Commun., Vol. 4, No. 3, 1136-1141, 2005.
doi:10.1109/TWC.2005.846997

2. Andersen, J. B. and B. N. Getu, "The MIMO cube — A compact MIMO antenna," The 5th Int. Symp. Wireless Personal Multimedia Commun., 112-114, 2002.
doi:10.1109/WPMC.2002.1088142

3. Nemeth, A., L. Szucs, and L. Nagy, "MIMO cube formed of slot dipoles," 16th IST Mobile Wireless Commun. Summit, 1-5, 2007.

4. Sarrazin, J., Y. Mahe, S. Avrillon, and S. Toutain, "Investigation on cavity/slot antennas for diversity and MIMO systems: The example of a three-port antenna," IEEE Antennas Wireless Propag. Lett., Vol. 7, 414-417, 2008.
doi:10.1109/LAWP.2008.2000830

5. Jones, D., Navy Electricity and Electronics Training Series, 1998.

6. Fujita, K. and H. Shirai, "Theoretical limitation of the radiation efficiency for homogenous electrically small antennas," IEICE Transactions on Electronics, Vol. 98, No. 1, 2-7, 2015.
doi:10.1587/transele.E98.C.2

7. Shahpari, M. and D. V. Thiel, Physical bounds for antenna radiation efficiency, arXiv preprint arXiv:1609.01761, 2016.

8. Cheng, D. K., Field and Wave Electromagnetics, 1989.

9. Coetzee, J. and J. Joubert, "The design of planar slot arrays revisited," ACES J, Vol. 15, No. 1, 27-33, 2000.

10. Stegen, R. J., Longitudinal shunt slot characteristics, Tech. Rep., Hughes Aircraft Co., 1951.

11. Shahpari, M. and D. V. Thiel, "The impact of reduced conductivity on the performance of wire antennas," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4686-4692, 2015.
doi:10.1109/TAP.2015.2479241

12. Kraus, J. D. and R. J. Marhefka, Antenna for All Applications, 2002.

13. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics letters, Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495