Vol. 72
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-11-27
Optimized UWB Signal to Shallow Buried Object Imaging
By
Progress In Electromagnetics Research Letters, Vol. 72, 7-10, 2018
Abstract
The removal of ground surface influence from ground penetrating radar (GPR) signals in shallowly-buried objects is of great importance. The ultra-wideband (UWB) radar is a solution which uses short pulse to distinguish ground surface from shallowly-buried objects. In this paper, a novel method optimizes bandwidth based on designing a Gaussian signal. Experimental results confirm the proposed method efficiency.
Citation
Ali Gharamohammadi, Yaser Norouzi, and Hassan Aghaeinia, "Optimized UWB Signal to Shallow Buried Object Imaging," Progress In Electromagnetics Research Letters, Vol. 72, 7-10, 2018.
doi:10.2528/PIERL17091506
References

1. Ho, K. C., L. Carin, P. D. Gader, and J. N. Wilson, "An investigation of using the spectral characteristics from ground penetrating radar for landmine/clutter discrimination," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 4, 1177-1191, Apr. 2008.
doi:10.1109/TGRS.2008.915747

2. Solimene, R., A. Cuccaro, A. Dell’Aversano, I. Catapano, and F. Soldovieri, "Ground clutter removal in GPR surveys," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 3, 792-798, Mar. 2014.
doi:10.1109/JSTARS.2013.2287016

3. Ho, K. C., P. D. Gader, J. N. Wilson, W. Lee, and T. C. Glenn, "Landmine detection using frequency domain features from GPR measurements and their fusion with time domain features," Proc. SPIE, Vol. 5794, 1141-1150, 2005.
doi:10.1117/12.604125

4. Montoya, T. P. and G. S. Smith, "Land mine detection using a ground-penetrating radar based on resistively loaded Vee dipoles," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 12, 1795-1806, Dec. 1999.
doi:10.1109/8.817655

5. Warren, C. and A. Giannopoulos, "Experimental and modeled performance of a ground penetrating radar antenna in lossy dielectrics," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 29-36, Jan. 2016.
doi:10.1109/JSTARS.2015.2430933

6. McMichael, I. T., E. C. Nallon, V. P. Schnee, W. R. Scott, and M. S. Mirotznik, "EBG antenna for GPR colocated with a metal detector for landmine detection," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 6, 1329-1333, Nov. 2013.
doi:10.1109/LGRS.2013.2239604

7. Haraz, O. and A.-R. Sebak, "UWB antennas for wireless applications," INTECH Open Sience, 2013.

8. Zhou, L., C. Huang, and Y. Su, "A fast back-projection algorithm based on cross correlation for GPR imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 2, 228-232, Mar. 2012.
doi:10.1109/LGRS.2011.2165523

9. Counts, T., A. C. Gurbuz, W. R. Scott, J. H. McClellan, and K. Kim, "Multistatic groundpenetrating radar experiments," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 8, 2544-2553, Aug. 2007.
doi:10.1109/TGRS.2007.900677