Vol. 73
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-01-23
Characterization and Modeling of Vegetation Effects on UHF Propagation through a Long Forested Channel
By
Progress In Electromagnetics Research Letters, Vol. 73, 9-16, 2018
Abstract
In this paper, measurement, modeling and validation of existing models on the effect of nonhomogeneous vegetation on UHF radio-wave propagation through a long forested channel at frequency of 1835 MHz are reported. The paper focuses on vegetation attenuation measurement through a long forested channel of about 8 km long with mixed vegetation of different density. The measured data were fitted using exponential decay function, and a new model was proposed from the fitted curve. The new proposed model will take care of the limitation in vegetation depth posted by some existing models. Generic models, mainly modified exponential decay and analytical models were also fitted to the data and validated, while RMSE was used to determine the best model that describes the data. The evaluated data results show that all the models tested give significant errors which show that they are not suitable for long forested channel scenario. Though COST 235 has the least error (17.05 dB), the error is still significant because COST 235 could only account for vegetation attenuation of short distance scenario. Attenuation shows corresponding increase with increase in leaves thickness in the forested channel considered, which was due to complex permittivity of the leaves moisture content and the dielectric properties of the leaves saline water. The developed model and other results obtained in this study will help to improve prediction accuracy of the effects of vegetation attenuation in nonhomogeneous vegetation along forested channels and also help in establishing efficient UHF radio link budget for long forested channel scenario.
Citation
Adebayo Segun Adewumi, and Olusegun Olabisi, "Characterization and Modeling of Vegetation Effects on UHF Propagation through a Long Forested Channel," Progress In Electromagnetics Research Letters, Vol. 73, 9-16, 2018.
doi:10.2528/PIERL17092004
References

1. Savage, N., D. L. Ndzi, A. Seville, E. Vilar, and J. Austin, "Radio wave propagation through vegetation: Factors influencing signal attenuation," Radio Science, Vol. 38, No. 5, 1088, 2003.
doi:10.1029/2002RS002758

2. Ndzi, D. L., L. M. Kamarudin, A. A. Mohammad Ezanuddin, A. Zakaria, R. B. Ahmad, M. F. B. A. Malek, A. Y. M. Shakaff, and M. N., "Vegetation attenuation measurements and modeling in plantations for wireless sensor network planning," Progress In Electromagnetic Research B, Vol. 36, 283-301, 2012.
doi:10.2528/PIERB11091908

3. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Study of propagation loss prediction in forest environment," Progress In Electromagnetic Research B, Vol. 17, 117-133, 2009.
doi:10.2528/PIERB09071901

4. De Jong, Y. L. C. and M. H. A. J. Herben, "A tree scattering model for improved propagation prediction in urban microcells," IEEE Transactions on Vechular Technology, Vol. 53, No. 2, 503, 2004.
doi:10.1109/TVT.2004.823493

5. Saxton, J. A. and J. A. Lane, "VHF and UHF reception," Wireless World, Vol. 61, No. 5, 229-232, 1995.

6. Al-Nuaimi, M. O. and A. Hammoudeh, "Measurement and prediction of attenuation and scatter of microwave signals by trees," IEEE Proceedings — Microwaves Antennas and Propagation, Vol. 141, No. 2, 70-76, 1994.
doi:10.1049/ip-map:19949840

7. Weissberger, M. A., An initial critical summary of models for predicting the attenuation of radio waves by foliage, Electromagnetic Compatibility Analysis Center, Annapolis, MD, ECAC-TR-81- 101, 1981.

8. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978.

9. CCIR, , Influences of terrain irregularities and vegetation on troposphere propagation, 235-236 CCIR Report, Geneva, 1986.

10. COST235, , Radio propagation effects on next-generation fixed-service terrestrial telecommunication systems, Final Report, Luxembourg, 1996.

11. Al-Nuaimi, M. O. and R. B. L. Stephens, "Measurements and prediction model optimization for signal attenuation in vegetation media at centimetre wave frequencies," IEE Proc. Microw. Antennas Propagation, Vol. 145, No. 3, 201-206, 1998.
doi:10.1049/ip-map:19981883

12. Seville, A. and K. H. Craig, "Semi-empirical model for millimetre-wave vegetation attenuation rates," Electron. Lett., Vol. 31, No. 17, 1507-1508, 1995.
doi:10.1049/el:19951000

13. Seville, A., "Vegetation attenuation: Modeling and measurements at millimetric frequencies," Proc. 10th IEE Int. Conf. Antennas Propagation, 2.5-2.8, Edinburgh, Scotland, Apr. 1997.

14. Schwering, F. K., E. J. Violette, and R. H. Espeland, "Milliameter-wave propagation in vegetation, experiments and theory," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 3, 355-367, 1988.
doi:10.1109/36.3037

15. Wang, F. and K. Sarabandi, "An enhanced millimeter-wave foliage propagation model," IEEE Trans. Antennas Propagation, Vol. 53, No. 7, 2138-2145, 2005.
doi:10.1109/TAP.2005.850704

16. Lin, Y. C. and K. Sarabandi, "A Monte Carlo coherent scattering model for forest canopies using fractal-generated trees," IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 1, 440-451, 1999.
doi:10.1109/36.739083

17. Koh, I. S. and K. Sarabandi, "Polarimetric channel characterization of foliage for performance assessment of GPS receivers under tree canopies," IEEE Trans. Antennas Propagation, Vol. 50, No. 5, 713-726, 2002.
doi:10.1109/TAP.2002.1011239

18. Adewumi, A. S., M. O. Alade, and H. K. Adewumi, "Development of an inbuilt UHF signal and weather parameters measuring system," International Journal for Research in Applied Science & Engineering Technology (IJRASET), Vol. 3, No. 8, 280-288, 2015.

19. McDonald, K. C., M. C. Dobson, and F. T. Ulaby, "Using MIMICS to model L-band multi angle andmulti temporal backscatter from a walnutorchard," IEEE Trans. Geosci. Remote Sensing, Vol. 28, 477-491, 1990.
doi:10.1109/TGRS.1990.572925

20. Karam, M. A., A. K. Fung, R. H. Lang, and N. S. Chauhan, "A microwave scattering model for layered vegetation," IEEE Trans. Geosci. Remote Sensing, Vol. 30, 767-784, 1992.
doi:10.1109/36.158872