Vol. 63
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-01-11
Investigation of Fold-Dependent Behavior in an Origami-Inspired FSS Under Normal Incidence
By
Progress In Electromagnetics Research M, Vol. 63, 131-139, 2018
Abstract
Frequency selective surfaces (FSS) lter specific electromagnetic (EM) frequencies that are defined by the geometry and often fixed periodic spacing of a conductive element array. By embedding the FSS pattern into an origami structure, we expand the number of physical configurations and periodicities of the FSS, allowing for fold-driven frequency tuning. The goal of this work is to examine the fold-dependent polarization and frequency behavior of an origami-inspired FSS under normal incidence and provide physical insight into its performance. The FSS is tessellated with the Miura-ori pattern and uses resonant length metallic dipoles with orthogonal orientations for two primary modes of polarization. A driven dipole model with geometric morphologies, representative of the folding operations, provides physical insight into the observed behavior of the FSS. Full-wave simulations and experimental results demonstrate a shift in resonant frequency and transmissivity with folding, highlighting the potential of origami structures as an underlying mechanism to achieve fold-driven EM agility in FSSs.
Citation
Deanna Sessions, Kazuko Fuchi, Sumana Pallampati, David Grayson, Steven Seiler, Giorgio Bazzan, Gregory Reich, Philip Buskohl, and Gregory H. Huff, "Investigation of Fold-Dependent Behavior in an Origami-Inspired FSS Under Normal Incidence," Progress In Electromagnetics Research M, Vol. 63, 131-139, 2018.
doi:10.2528/PIERM17092504
References

1. Miura, K., "Method of packaging and deployment of large membranes in space," Proceedings of 31st Congress International Astronautical Federation, 1-10, 1980.

2. Zirbel, S. A., et al. "Accommodating thickness in origami-based deployable arrays," Journal of Mechanical Design, Vol. 135, No. 11, 111005, 2013.
doi:10.1115/1.4025372

3. Myer, J. H. and F. Cooke, "Optigami - A tool for optical systems design," Applied Optics, Vol. 8, No. 2, 260, 1969.
doi:10.1364/AO.8.000260

4. Nogi, M., N. Komoda, K. Otuska, and K. Suganuma, "Foldable nanopaper antennas for origami electronics," Nanoscale, Vol. 5, No. 10, 4395-4399, 2013.
doi:10.1039/c3nr00231d

5. Hayes, G. J., Y. Liu, J. Genzer, G. Lazzi, and M. D. Dickey, "folding origami microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 5416-5419, 2014.
doi:10.1109/TAP.2014.2346188

6. Liu, X., S. Yao, S. V. Georgakopoulos, B. S. Cook, and M. M. Tentzeris, "Reconfigurable helical antenna based on an origami structure for wireless communication system," 2014 IEEE MTT-S International Microwave Symposium (IMS), 1-4, 2014.

7. Yao, S., X. Liu, J. Gibson, and S. V. Georgakopoulos, "Deployable origami Yagi loop antenna," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2215-2216, 2015.
doi:10.1109/APS.2015.7305496

8. Yao, S., X. Liu, S. V. Georgakopoulos, and M. M. Tentzeris, "A novel reconfigurable origami spring antenna," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 374-375, 2014.
doi:10.1109/APS.2014.6904519

9. Fuchi, K., J. Tang, B. Crowgey, A. R. Diaz, E. J. Rothwell, and R. O. Ouedraogo, "Origami tunable frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 473-475, 2012.
doi:10.1109/LAWP.2012.2196489

10. Fuchi, K., et al. "Spatial tuning of a RF frequency selective surface through origami," SPIE Defense + Security, 98440W-98440W-10, International Society for Optics and Photonics, 2016.

11. Demaine, E. D. and J. O’Rourke, Geometric Folding Algorithms, Cambridge University Press, Cambridge, 2007.
doi:10.1017/CBO9780511735172

12. Lang, R. J., "Treemaker 4.0: A program for origami design,", Available: http://www.langorigami.com/science/computational/treemaker/TreeMkr40. pdf.

13. Tachi, T., "Simulation of rigid origami," Origami, Vol. 4, 175-187, 2009.

14. Schenk, M. and S. D. Guest, "Origami folding: A structural engineering approach," Origami, 291-304, 2011.

15. Fuchi, K., et al. "Origami actuator design and networking through crease topology optimization," Journal of Mechanical Design, Vol. 137, No. 9, 091401, 2015.
doi:10.1115/1.4030876

16. Fuchi, K., P. R. Buskohl, J. J. Joo, and G. W. Reich, "Control of RF transmission characteristics through origami design," ASME International Design Engineering Technical Conference, Charlotte, NC, 2016.

17. High Frequency Structural Simulator, 15th Ed., ANSYS, Inc., Pittsburgh, PA, 2012.