Department of Electrical & Computer Engineering
Penn State University
United States
HomepageDepartment of Electrical & Computer Engineering
Texas A&M University
USA
Homepage1. Miura, K., "Method of packaging and deployment of large membranes in space," Proceedings of 31st Congress International Astronautical Federation, 1-10, 1980. Google Scholar
2. Zirbel, S. A., et al. "Accommodating thickness in origami-based deployable arrays," Journal of Mechanical Design, Vol. 135, No. 11, 111005, 2013.
doi:10.1115/1.4025372 Google Scholar
3. Myer, J. H. and F. Cooke, "Optigami - A tool for optical systems design," Applied Optics, Vol. 8, No. 2, 260, 1969.
doi:10.1364/AO.8.000260 Google Scholar
4. Nogi, M., N. Komoda, K. Otuska, and K. Suganuma, "Foldable nanopaper antennas for origami electronics," Nanoscale, Vol. 5, No. 10, 4395-4399, 2013.
doi:10.1039/c3nr00231d Google Scholar
5. Hayes, G. J., Y. Liu, J. Genzer, G. Lazzi, and M. D. Dickey, "folding origami microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 5416-5419, 2014.
doi:10.1109/TAP.2014.2346188 Google Scholar
6. Liu, X., S. Yao, S. V. Georgakopoulos, B. S. Cook, and M. M. Tentzeris, "Reconfigurable helical antenna based on an origami structure for wireless communication system," 2014 IEEE MTT-S International Microwave Symposium (IMS), 1-4, 2014. Google Scholar
7. Yao, S., X. Liu, J. Gibson, and S. V. Georgakopoulos, "Deployable origami Yagi loop antenna," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2215-2216, 2015.
doi:10.1109/APS.2015.7305496 Google Scholar
8. Yao, S., X. Liu, S. V. Georgakopoulos, and M. M. Tentzeris, "A novel reconfigurable origami spring antenna," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 374-375, 2014.
doi:10.1109/APS.2014.6904519 Google Scholar
9. Fuchi, K., J. Tang, B. Crowgey, A. R. Diaz, E. J. Rothwell, and R. O. Ouedraogo, "Origami tunable frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 473-475, 2012.
doi:10.1109/LAWP.2012.2196489 Google Scholar
10. Fuchi, K., et al. "Spatial tuning of a RF frequency selective surface through origami," SPIE Defense + Security, 98440W-98440W-10, International Society for Optics and Photonics, 2016. Google Scholar
11. Demaine, E. D. and J. O’Rourke, Geometric Folding Algorithms, Cambridge University Press, 2007.
doi:10.1017/CBO9780511735172
12. Lang, R. J., "Treemaker 4.0: A program for origami design,", Available: http://www.langorigami.com/science/computational/treemaker/TreeMkr40. pdf. Google Scholar
13. Tachi, T., "Simulation of rigid origami," Origami, Vol. 4, 175-187, 2009. Google Scholar
14. Schenk, M. and S. D. Guest, "Origami folding: A structural engineering approach," Origami, 291-304, 2011. Google Scholar
15. Fuchi, K., et al. "Origami actuator design and networking through crease topology optimization," Journal of Mechanical Design, Vol. 137, No. 9, 091401, 2015.
doi:10.1115/1.4030876 Google Scholar
16. Fuchi, K., P. R. Buskohl, J. J. Joo, and G. W. Reich, "Control of RF transmission characteristics through origami design," ASME International Design Engineering Technical Conference, Charlotte, NC, 2016. Google Scholar
17. High Frequency Structural Simulator, 15th Ed., ANSYS, Inc., 2012.