Vol. 68
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-10
Unconditional Stability Analysis of the 3D-Radial Point Interpolation Method and Crank-Nicolson Scheme
By
Progress In Electromagnetics Research M, Vol. 68, 119-131, 2018
Abstract
This paper provides the theoretical validation of the unconditional stability, using the Von Neumann method, for the radial point interpolation method (RPIM) and Crank-Nicolson (CN) scheme, in a three dimensional (3D) problem. Moreover, the matrix inversion process, typical of the CN implicit scheme, is circumvented and approximated by a finite series for a particular stability factor range. To validate numerically the efficiency of the CN-RPIM unconditional stability, the resonant frequency inside a 2D double ridged rectangular cavity is simulated. The numerical results confirm that the CN-RPIM is significantly efficient, since the simulation time is reduced by up to 90%, and the memory requirement is saved up to 81%, with a few loss of accuracy.
Citation
Hichem Naamen, and Taoufik Aguili, "Unconditional Stability Analysis of the 3D-Radial Point Interpolation Method and Crank-Nicolson Scheme," Progress In Electromagnetics Research M, Vol. 68, 119-131, 2018.
doi:10.2528/PIERM17100201
References

1. Ramm, A. G., Inverse Problems Mathematical and Analytical Techniques with Applications to Engineering, Springer Science, 2005.

2. Collin, R. E., Foundations of Microwave Engineering, IEEE Press Series on Electromagnetic Wave Theory, 2000.

3. Buchanan, J. L. and P. R. Turner, Numerical Methods and Analysis, McGraw-Hill International Editions, 1992.

4. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method, Artech House, 2000.

5. Liu, G. R., Mesh-Free Methods Moving beyond the Finite Element Method, CRC Press, 2003.

6. Ala, G., E. Francomano, A. Tortorici, E. Toscano, and F. Viola, "Smoothed particle electromagnetics: A mesh-free solver for transients," J. Comput. Appl. Math., Vol. 191, No. 2, 194-205, 2006.
doi:10.1016/j.cam.2005.06.036

7. Melenk, J. M. and I. Babuska, "The partition of unity finite element method: Basic theory and applications," Comput. Meth. Appl. Mech. Eng., Vol. 139, 289-314, 1996.
doi:10.1016/S0045-7825(96)01087-0

8. Babuska, I. and J. M. Melenk, "The partition of unity method," Int. J. Numer. Methods Eng., Vol. 40, 727-758, 1997.
doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N

9. Atluri, S. N., H. G. Kim, and J. Y. Cho, "A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) and local boundary integral equation (LBIE) methods," Comput. Mech., Vol. 24, No. 5, 348-372, November 1999.
doi:10.1007/s004660050457

10. Liu, G. R. and Y. T. Gu, An Introduction to Meshfree Methods and Their Programming, Springer, 2005.

11. Yu, Y., F. Jolani, and Z. Chen, "A hybrid ADI-RPIM scheme for efficient meshless modeling," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, 2011.

12. Zhu, H., C. Gao, and H. Chen, "An unconditionally stable radial point interpolation method based on Crank-Nicolson scheme," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 393, 2017.
doi:10.1109/LAWP.2016.2580611

13. Yu, Y. and Z. Chen, "Towards the development of an unconditionally stable time-domain meshless numerical method," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 3, March 2010.

14. Hopfer, S., "The design of ridged waveguides," IRE Transactions on Microwave Theory and Techniques, 20-29, October 1955.

15. Chen, T.-S., "Calculation of the parameters of the ridged waveguides," IRE Transactions on Microwave Theory and Techniques, 12-17, January 1957.
doi:10.1109/TMTT.1957.1125084

16. Rong, Y. and K. A. Zak, "Characteristics of generalized rectangular and circular ridge waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 2, 258-265, 2000.
doi:10.1109/22.821772

17. Kim, H., I.-S. Koh, and J.-G. Yook, "Implicit ID-FDTD algorithm based on Crank-Nicolson scheme: Dispersion relation and stability analysis," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, June 2011.

18. Meurant, G., Computer Solution of Large Linear Systems, Elsevier, 2006.

19. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley and Sons, 1989.

20. Marcuvirz, N., Waveguide Handbook, Peter Peregrinus Ltd., 1965.

21. Sun, G. and C. W. Trueman, "Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, May 2006.

22. Yi, Y. and Z. Chen, "A 3-D Radial point interpolation method for meshless time-domain modeling," IEEE Transactions and Microwave Theory and Techniques, Vol. 57, No. 8, March 2009.