1. Dastranj, A., "Optimization of a printed UWB antenna: Application of the invasive weed optimization algorithm in antenna design," IEEE Antennas & Propagation Magazine, Vol. 59, No. 1, 48-57, Feb. 2017.
doi:10.1109/MAP.2016.2630025 Google Scholar
2. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308 Google Scholar
3. Dongho, K., J. Ju, and J. Choi, "A mobile communication base station antenna using a genetic algorithm based Fabry-Perot resonance optimization," IEEE Trans. Ant. & Prop., Vol. 60, No. 2, 1053, Feb. 2012.
doi:10.1109/TAP.2011.2173108 Google Scholar
4. Goudos, S. K., "Antenna design using binary differential evolution: Application to discrete-valued design problems," IEEE Antennas & Propagation Magazine, Vol. 59, No. 1, 74-93, Feb. 2017.
doi:10.1109/MAP.2016.2630041 Google Scholar
5. Ni, T., Y.-C. Jiao, L. Zhang, and Z.-B. Weng, "Worst-case tolerance synthesis for low-sidelobe sparse linear arrays using a novel self-adaptive hybrid differential evolution algorithm," Progress In Electromagnetics Research B, Vol. 66, 91-105, 2016.
doi:10.2528/PIERB16011403 Google Scholar
6. Lanza Diego, M., J. R. Perez Lopez, and J. Basterrechea, "Synthesis of planar arrays using a modified particle swarm optimization algorithm by introducing a selection operator and elitism," Progress In Electromagnetics Research, Vol. 93, 145-160, 2009.
doi:10.2528/PIER09041303 Google Scholar
7. Deb, A., J. S. Roy, and B. Gupta, "Performance comparison of differential evolution, particle swarm optimization and genetic algorithm in the design of circularly polarized microstrip antennas," IEEE Trans. Ant. & Prop., Vol. 62, No. 8, 3920-3928, Aug. 2014.
doi:10.1109/TAP.2014.2322880 Google Scholar
8. Hosseini, S. A. and Z. Atlasbaf, "Optimization of side lobe level and fixing quasi-nulls in both of the sum and difference patterns by using continuous ant colony optimization (ACO) method," Progress In Electromagnetics Research, Vol. 79, 321-337, 2008.
doi:10.2528/PIER07102901 Google Scholar
9. Chang, L., C. Liao, W. Lin, L.-L. Chen, and X. Zheng, "A hybrid method based on differential evolution and continuous ant colony optimization and its application on wideband antenna design," Progress In Electromagnetics Research, Vol. 122, 105-118, 2012.
doi:10.2528/PIER11092207 Google Scholar
10. Cui, C.-Y., Y.-C. Jiao, and L. Zhang, "Synthesis of some low sidelobe linear arrays using hybrid differential evolution algorithm integrated with convex programming," IEEE Ant. & Wireless Prop. Letters, Vol. 16, 2017. Google Scholar
11. Rocca, P., G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas & Propagation Magazine, Vol. 53, No. 1, 38-49, Feb. 2011.
doi:10.1109/MAP.2011.5773566 Google Scholar
12. Hoorfar, A., "Evolutionary programming in electromagnetic optimization: A review," IEEE Trans. Ant. & Prop., Vol. 55, No. 3, 523-537, Mar. 2007.
doi:10.1109/TAP.2007.891306 Google Scholar
13. Coleman, C. M., E. J. Rothwell, and J. E. Ross, "Investigation of simulated annealing, ant-colony optimization, and genetic algorithms for self-structuring antenna," IEEE Trans. Ant. & Prop., Vol. 52, No. 4, 1007-1014, Apr. 2004.
doi:10.1109/TAP.2004.825658 Google Scholar
14. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Trans. Ant. & Prop., Vol. 45, No. 3, 343-353, Mar. 1997.
doi:10.1109/8.558650 Google Scholar
15. Yerrola, A. K. and P. Spandana, "Optimization of linear antennas — A survey," Int’l. J. Comp. App., Vol. 171, No. 3, 17-20, Aug. 2017. Google Scholar
16. Shan, A. and G. G. Wang, "Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions," Struc. & Multidisc. Opt., Vol. 41, 219-241, 2010.
doi:10.1007/s00158-009-0420-2 Google Scholar
17. Kuwahara, Y., "Multiobjective optimization design of Yagi-Uda antenna," IEEE Trans. Ant. & Prop., Vol. 53, No. 6, 1984-1992, Jun. 2005.
doi:10.1109/TAP.2005.848501 Google Scholar
18. Casula, G. A., G. Mazzarella, and N. Sirena, "Evolutionary design of wide-band parasitic dipole arrays," IEEE Trans. Ant. & Prop., Vol. 59, No. 11, 4094-4102, Nov. 2011.
doi:10.1109/TAP.2011.2164185 Google Scholar
19. Saraereh, O. A., A. A. Saraira, Q. H. Alsafasfeh, and A. Arfoa, "Bio-inspired algorithms applied on microstrip patch antennas: A review," Int. J. Comm. Ant. & Prop. (I.Re.C.A.P.), Vol. 6, No. 6, 336-347, 2016. Google Scholar
20. Pantoja, M. F., A. R. Bretones, and R. G. Martin, "Benchmark antenna problems for evolutionary optimization algorithms," IEEE Trans. Ant. & Prop., Vol. 55, No. 4, 1111-1121, Apr. 2007.
doi:10.1109/TAP.2007.893396 Google Scholar
21. Storn, R. and K. Price, "Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces,", TR-95-012, ICSI, USA, 1995. Google Scholar
22. Das, A., S. Mullick, and P. N. Suganthan, "Recent advances in differential evolution — An updated survey," Swarm & Evol. Comp., Vol. 27, 1-30, 2016. Google Scholar
23. Zhou, X., G. Zhang, X. Hao, and L. Yu, "A novel differential evolution algorithm using local abstract convex underestimate strategy for global optimization," Comp. & Op. Res., Vol. 75, 132-149, 2016.
doi:10.1016/j.cor.2016.05.015 Google Scholar
24. Tanabe, R. and A. Fukunaga, "Success-history based parameter adaptation for differential evolution," Proc. IEEE Cong. Evol. Comp. 2013, 71-78, Cancun, Mexico, 2013. Google Scholar
25. Tanabe, R. and A. Fukunaga, "Improving the search performance of SHADE using linear population size reduction," Proc. IEEE Cong. Evol. Comp. 2014, 1658-1665, Beijing, 2014.
doi:10.1109/CEC.2014.6900380 Google Scholar
26. Liang, J., B. Qu, P. Suganthan, and A. Hernandez-Diaz, Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization, Computational Intelligence Laboratory, Zhengzhou University, China and Technical Report, Nanyang Technological University, Singapore, 2013.
27. Liang, J., B. Qu, and P. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single-objective real-parameter numerical optimization, Computational Intelligence Laboratory, Zhengzhou University, China and Technical Report, Nanyang Technological University, Singapore, 2014.
28. Zhang, J. and C. Sanderson, "JADE: Adaptive differential evolution with optional external archive," IEEE Trans. Evol. Comp., Vol. 13, No. 5, 945-958, 2009.
doi:10.1109/TEVC.2009.2014613 Google Scholar
29. Isbell, D. E., "Log periodic dipole arrays," IRE Trans. Ant. & Prop., Vol. 8, No. 3, 260-267, May 1960.
doi:10.1109/TAP.1960.1144848 Google Scholar
30. Jordan, E. C. and K. G. Balmain, Electromagnetic Waves and Radiating Systems, 2nd Ed., Chap. 15, Prentice-Hall, Inc., Englewood Cliffs, 1968.
31. Balanis, C. A., Antenna Theory: Analysis and Design, Section 11.4, Wiley, 1997.
32. Yang, J., "On conditions for constant radiation characteristics for log-periodic array antennas," IEEE Trans. Ant. & Prop., Vol. 58, No. 5, 1521, May 2010.
doi:10.1109/TAP.2010.2044332 Google Scholar
33. Lehmensiek, R. and D. I. L. de Villiers, "Optimization of log-periodic dipole array antennas for wideband omnidirectional radiation," IEEE Trans. Ant. & Prop., Vol. 63, No. 8, 3714, Aug. 2015.
doi:10.1109/TAP.2015.2434413 Google Scholar
34. Lehmensiek, R. and D. I. L. de Villiers, "Constant radiation characteristics for log-periodic dipole array antennas," IEEE Trans. Ant. & Prop., Vol. 62, No. 5, 2966, May 2014. Google Scholar
35. Burke, G. J., Numerical electromagnetics code — NEC-4.2 method of moments, Part I: User’s manual, LLNL-SM-490875, Lawrence Livermore National Laboratory (USA), Livermore, CA, Jul. 2011.
36. Chowdhury, A., A. Ghosh, R. Giri, and S. Das, "Optimization of antenna configuration with a fitness-adaptive differential evolution algorithm," Progress In Electromagnetics Research B, Vol. 26, 291-319, 2010.
doi:10.2528/PIERB10080703 Google Scholar