Vol. 63
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-01-12
A Compact Coplanar Waveguide Fed Wideband Monopole Antenna for RF Energy Harvesting Applications
By
Progress In Electromagnetics Research M, Vol. 63, 175-184, 2018
Abstract
For energy harvesting applications a new design of a coplanar waveguide (CPW) fed monopole antenna is presented. It covers almost all useful band ranges from 900 MHz-9.9 GHz (Radio, GSM, ISM, UWB bands). It also provides band reject characteristics for the range 3.1 GHz-5.6 GHz (HIPERLAN, C-Band, and W-LAN) to avoid interference from this range. The new design is based on the modification of coplanar waveguide (CPW) structure and optimizing the gap between patch and CPW ground for covering the ultra wideband (UWB) range and other useful ranges (Radio, GSM and ISM). Bandwidth enhancement and impedance matching for UWB range have been obtained by chamfering the corners, cutting two slots in CPW ground and dual stubs. The new design incorporates a parasitic patch above the antenna patch for tunning the desired band rejection. The entire design has been optimized at various stages during its evolution. The structure is compact in size 50×40×1.6 mm3. It may also be used for mobile, military and satellite applications.
Citation
Monika Mathur, Ankit Agrawal, Ghanshyam Singh, and Satish Kumar Bhatnagar, "A Compact Coplanar Waveguide Fed Wideband Monopole Antenna for RF Energy Harvesting Applications," Progress In Electromagnetics Research M, Vol. 63, 175-184, 2018.
doi:10.2528/PIERM17101201
References

1. Yang, X.-X., J.-S. Xu, D.-M. Xu, and C.-L. Xu, "X-band circularly polarized rectennas for microwave power transmission applications," J. Electron., Vol. 25, No. 3, 389, 2008.

2. Gao, Y.-Y., X. Yang, C. Jiang, and J.-Y. Zhou, "A circularly polarized rectenna with low profile for wireless power transmission," Progress In Electromagnetics Research Letters, Vol. 13, 41-49, 2010.
doi:10.2528/PIERL09111805

3. Huang, F. J., C.-M. Lee, C.-L. Chang, L.-K. Chen, T.-C. Yo, and C.-H. Luo, "Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2646, 2011.
doi:10.1109/TAP.2011.2152317

4. Takhedmit, H., L. Cirio, S. Bellal, D. Delcroix, and O. Picon, "Compact and efficient 2.45 GHz circularly polarised shorted ring-slot rectenna," Electron. Letters, Vol. 48, No. 5, 253, 2012.
doi:10.1049/el.2011.3890

5. Federal Communications Commission, First report and order, Revision of Part 15 of commission’s rule regarding UWB transmission system, FCC, 02-48, Washington, DC, 2002.

6. Jung, J., H. Lee, and Y. Lim, "Compact band-notched ultra-wideband antenna with parasitic elements," Electron. Letters, Vol. 44, No. 19, 1104, 2008.
doi:10.1049/el:20082265

7. Choi, S. T., K. Hamaguchi, and R. Kohno, "Small printed CPW-fed triangular monopole antenna for ultra-wideband applications," Microw. Opt. Technol. Lett., Vol. 51, No. 1, 1180, 2009.
doi:10.1002/mop.24278

8. Medeiros, C. R., J. R. Costa, and C. A. Fernandes, "Compact tapered slot UWB antenna with WLAN band rejection," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 1, 661, 2009.
doi:10.1109/LAWP.2009.2022063

9. Jang, J.-W. and H.-Y. Hwang, "An improved band-rejection UWB antenna with resonant patches and a slot," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 1, 299, 2009.
doi:10.1109/LAWP.2009.2015344

10. Zha, F. T., S. X. Gong, G. Liu, H. Y. Yang, and S. G. Lin, "Compact slot antenna for 2.4 GHz/UWB with dual band-notched characteristic," Microw. Opt. Technol. Lett., Vol. 48, No. 1, 1859, 2009.
doi:10.1002/mop.24475

11. Lin, C.-C., Y.-C. Kan, L.-C. Kuo, and H.-R. Chuang, "A planar triangular monopole antenna for UWB communication,", Vol. 15, No. 10, 624, 2005.

12. Foudazi, A., H. R. Hassani, and S. M. A. Nezhad, "Small UWB planar monopole with added GPS/GSM/WLAN bands," IEEE Trans. Antennas Propag., Vol. 60, No. 6, 66, 2012.
doi:10.1109/TAP.2012.2194632

13. Qing, X. and Z. N. Chen, "Compact coplanar waveguide-fed ultra-wideband monopole-like slot antenna," Microwaves, Antennas & Propagation, Vol. 3, No. 5, 889, 2009.
doi:10.1049/iet-map.2008.0075

14. Li, W.-T., X.-W. Shi, T.-L. Zhang, and Y. Song, "Novel UWB planar monopole antenna with dual band-notched characteristics," Microw. Opt. Technol. Lett., Vol. 52, No. 1, 48, 2010.
doi:10.1002/mop.24827

15. Ammann, M. J. and L. E. Doyle, "Small planar monopole covers multiband BRANs," Proc 30th European Microwave Conf., Vol. 2, 242-246, Paris, France, 2000.

16. Mathur, D., S. K. Bhatnagar, and V. Sahula, "Quick estimation of rectangular patch antenna dimensions based on equivalent design concept," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1469, 2014.
doi:10.1109/LAWP.2014.2334362

17. Mathur, M., A. Vats, and A. Agrawal, "A new design formula for feedline dimensions of the microstrip patch antenna by using equivalent design concept," IEEE Proc. of International Conference on Signal Processing and Communication Systems, 105-110, Jaypee, Noida, India, 2015, ISBN-No. 978-1-4799-6761-2/15, available: http://ieeeexplore.ieee.org/DOI:10.1109/ICSPCom.2015.7150629.

18. Reed, J. H., An Introduction to Ultra Wideband Communication Systems, Prentice Hall PTR, Upper Saddle River, NJ, 2005.

19. Volakis, J. L., Antenna Engineering Handbook, McGraw-Hill Education, New York, 2009.

20. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House Publisher, Boston, London, 2001.