Vol. 71
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-11-20
A Compact Meandered CPW-Fed Antenna with Asymmetrical Ground Plane for 5.8 GHz RFID Applications with Multiple Split Ring Resonator
By
Progress In Electromagnetics Research Letters, Vol. 71, 125-131, 2017
Abstract
In this paper, a Multiple Split Ring Resonator (MSRR) based coplanar waveguide (CPW) fed antenna for 5.8 GHz RFID application is presented. The antenna has a compact size of 15 x 21 x 0.8 mm3. The proposed antenna is designed, fabricated and tested. The simulated results are discussed and in good compliance with the measured results. Split Ring Resonator (SRR) characteristics are also studied. The proposed antenna shows good performance at the measured resonance frequency of 5.75 GHz.
Citation
Ramasamy Pandeeswari, "A Compact Meandered CPW-Fed Antenna with Asymmetrical Ground Plane for 5.8 GHz RFID Applications with Multiple Split Ring Resonator," Progress In Electromagnetics Research Letters, Vol. 71, 125-131, 2017.
doi:10.2528/PIERL17101704
References

1. Pandeeswari, R., S. Raghavan, and K. Ramesh, "A compact split ring resonator loaded antenna," PIERS Proceedings, 37-40, Moscow, Russia, August 19-23, 2012.

2. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014.
doi:10.1002/mop.28602

3. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, No. 2, 292-296, 2015.
doi:10.1002/mop.28835

4. Pandeeswari, R. and S. Raghavan, "A CPW-Fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WIMAX applications," Microwave and Optical Technology Letters, Vol. 57, 2413-2418, Wiley Interscience, 2015.

5. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, New York, 2005.
doi:10.1002/0471754323

6. Pandeeswari, R., S. Raghavan, A. Krishnan, and P. Jain, "Artificial neural network model for MNG-metamaterial spiral resonator," PIERS Proceedings, 29-33, Moscow, Russia, August 19-23, 2012.

7. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcfa-Farcfa, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211

8. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Transactions on Antennas and Propagation, Vol. 55, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950

9. Sousa Neto, M. P., H. C. C. Fernandes, and C. G. Moura, "Design of a ultrawide band monopole antenna using split ring resonator for notching frequencies," Microwave and Optical Technology Letters, Vol. 56, 1471-1473, 2014.
doi:10.1002/mop.28363

10. Yang, K., H. Wang, Z. Lei, Y. Xie, and H. Lai, "CPW-fed slot antenna with triangular SRR terminated feedline for WLAN/WiMAX applications," Electron Lett., Vol. 47, 685-686, 2011.
doi:10.1049/el.2011.1232

11. Si, L.-M., H.-J. Sun, Y. Yuan, and X. Lv, "CPW-fed compact planar UWB antenna with circular disc and spiral split ring resonators," PIERS Proceedings, 502-505, Beijing, China, March 23-27, 2009.

12. Pandeeswari, R. and S. Raghavan, "Meandered CPW-fed hexagonal split ring resonator monopole antenna for 5.8 GHz RFID applications," Microwave and Optical Technology Letters, Vol. 57, 681-684, Wiley Interscience, USA, 2015.

13. Pendry, J. B., A. J. Holden, D. J. Robbin, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-1084, 1999.
doi:10.1109/22.798002