1. Dong, Y. H., C. Liu, G. L. Dai, and Y. L. Yan, "VLF transmit antenna impedance characteristic based on top-load configuration," Chinese Journal of Radio Science, Vol. 29, No. 4, 763-768, 2014. Google Scholar
2. Madanayake, A., S. Choi, M. Tarek, S. Dharmesena, et al. "Energy-efficient ULF/VLF transmitters based on mechanically-rotating dipoles," Engineering Research Conference (MERCon), 230-235, Moratuwa, Sri Lanka, May 29–31, 2017. Google Scholar
3. Yan, Y. L., C. Liu, H. N. Wu, and Y. H. Dong, "Non-foster matching network design for VLF receive loop antenna," IEICE Electronics Express, Vol. 13, No. 12, 1-10, 2016.
doi:10.1587/elex.13.20160460 Google Scholar
4. Li, H.-Y., J. Zhan, Z.-S. Wu, and P. Kong, "Numerical simulations of ELF/VLF wave generated by modulated beat-wave ionospheric heating in high latitude regions," Progress In Electromagnetics Research M, Vol. 50, 55-63, 2016.
doi:10.2528/PIERM16062604 Google Scholar
5. Rozhnoi, A., M. Solovieva, M. Parrot, M. Hayakawa, P.-F. Biagi, et al. "VLF/LF signal studies of the ionospheric response to strong seismic activity in the Far Eastern region combining the DEMETER and ground-based observations," Physics and Chemistry of the Earth, Vol. 85–86, 141-149, 2015.
doi:10.1016/j.pce.2015.02.005 Google Scholar
6. Liu, Y. J., F. Liu, D. B. Yang, J. Xu, and Z. Zhang, "Type of active impulse noise suppressing method based on double-loop antennas in very low frequency/ultra-low frequency coupling communications," IET Microwaves, Antennas & Propagation, Vol. 11, No. 6, 867-873, 2017.
doi:10.1049/iet-map.2016.0807 Google Scholar
7. Liu, Y. W. and X. B. Su, "Analysis and design of a new 2×2 tapered finline array for spatial power combining," Journal of Electronics & Information Technology, Vol. 32, No. 2, 470-475, 2010.
doi:10.3724/SP.J.1146.2009.00017 Google Scholar
8. Boaventura, A., A. Coallado, A. Georgiadis, and N. B. Carvalho, "Spatial power combining of multi-sine signals for wireless power transmission applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 1022-1030, 2014.
doi:10.1109/TMTT.2014.2300452 Google Scholar
9. Song, K., J. F. Zhang, S. Y. Hu, and Y. Fan, "Ku-band 200-W pulsed power amplifier based on waveguide spatially power-combining technique for industrial applications," IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, 4274-4280, 2014.
doi:10.1109/TIE.2013.2284137 Google Scholar
10. Shan, X. Y. and Z. X. Shen, "An eight-way power combiner based on a transition between rectangular waveguide and multiple microstrip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 7, 2557-2561, 2013.
doi:10.1109/TMTT.2013.2264291 Google Scholar
11. Staiman, D., M. Breese, and W. Patton, "New technique for combining solid-state sources," IEEE Journal of Solid-state Circuits, Vol. 3, No. 3, 238-243, 1968.
doi:10.1109/JSSC.1968.1049891 Google Scholar
12. Zhang, Y. S. and W. Hong, "A millimeter-wave gain enhanced multi-beam antenna based on a coplanar cylindrical dielectric lens," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3485-3488, 2012.
doi:10.1109/TAP.2012.2194646 Google Scholar
13. Harvey, J., E. Brown, and D. Rutledge, "Spatial power combining for high-power transmitters," Microwave Magazine, Vol. 1, No. 4, 48-59, 2000.
doi:10.1109/6668.893246 Google Scholar
14. Yin, K., K. Zhang, and J. Xu, "Characterization and design of millimeter-wave full-band waveguidebased spatial power divider/combiner," Progress In Electromagnetics Research C, Vol. 50, 65-74, 2014.
doi:10.2528/PIERC14031604 Google Scholar
15. Ortega, B., J. Mora, and R. Chulia, "Optical beamformer for 2-D phased array antenna with subarray partitioning capability," IEEE Photonics Journal, Vol. 8, No. 3, 1-9, 2017.
doi:10.1109/JPHOT.2016.2550323 Google Scholar
16. Guo, L. T., W. H. Huang, C. Chang, Y. Liu, et al. "Studies of a leaky-wave phased array antenna for high-power microwave applications," IEEE Transactions on Plasma Science, Vol. 44, No. 10, 2366-2375, 2016.
doi:10.1109/TPS.2016.2601105 Google Scholar
17. Wang, B. and K.-M. Huang, "Spatial microwave power combining with anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 114, 195-210, 2011.
doi:10.2528/PIER11010604 Google Scholar
18. Lu, G., F. X. Wang, B. Chen, and L. Zhou, "Analysis of electrical properties of multi-VLF thirteentower umbrella antenna array," Journal of Navel University of Engineering, Vol. 26, No. 4, 46-49, 2014. Google Scholar
19. Chen, Q. J., Q. X. Jiang, F. L. Zeng, and C. B. Song, "Single frequency spatial power combining using sparse array based on time reversal of electromagnetic wave," Acta Physica Sinica, Vol. 64, No. 20, 0204101, 2015. Google Scholar
20. Chen, S. C., Y. L. Yan, and J. J. Ling, "Control technique of dynamic tuning of VLF transmitting antennas," Journal of Information Engineering University, Vol. 16, No. 4, 424-430, 2015. Google Scholar
21. Clive, P., G. Stuart, M. John, and J. R. Daniel, "Theory and practice of modern antenna range measurements,", The Institution of Engineering and Technology, London, 2014. Google Scholar
22. Fu, Z. H., "Constrained minimum power combination for broadband beamformer design in the STFT domain," Frontiers of Computer Science, Vol. 11, No. 3, 408-418, 2017.
doi:10.1007/s11704-016-6110-5 Google Scholar
23. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley Press, Hoboken, 2016.
24. Li, B., C. Liu, and H. Wu, "A moment-based study on the impedance effect of mutual coupling for VLF umbrella antenna arrays," Progress In Electromagnetics Research C, Vol. 76, 75-86, 2017.
doi:10.2528/PIERC17061702 Google Scholar