Vol. 73
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-02-12
A Miniaturized Filtering 3-dB Branch-Line Hybrid Coupler with Wide Suppression Band
By
Progress In Electromagnetics Research Letters, Vol. 73, 83-89, 2018
Abstract
A 3-dB branch-line hybrid coupler with wide stopband responses is presented in this letter. An equivalent K-inverter with bandpass function is used instead of one quarter-wavelength transmission line, which will realize size reduction and wide stopband characteristic of the coupler. Prototype of a branch-line hybrid coupler, which divides the power equally with 90° phase difference between the output ports, is also fabricated and tested. Both the simulation and measurement results show that such a hybrid coupler exhibits an 83.2% size reduction and has transmission suppression of -20 dB or less within five-fold bandwidth.
Citation
Ruo-Nan Du, Zi-Bin Weng, and Chi Zhang, "A Miniaturized Filtering 3-dB Branch-Line Hybrid Coupler with Wide Suppression Band," Progress In Electromagnetics Research Letters, Vol. 73, 83-89, 2018.
doi:10.2528/PIERL17111406
References

1. Jung, S. C., R. Negra, and F. M. Ghannouchi, "A design methodology for miniaturized 3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 12, 2950-2953, 2008.
doi:10.1109/TMTT.2008.2007323

2. Tsai, K. Y., H. S. Yang, and J. H. Chen, "A miniaturized 3-dB branch-line hybrid coupler with harmonics suppression," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 10, 537-539, 2011.
doi:10.1109/LMWC.2011.2164901

3. Li, B., X. Wu, and W. Wu, "A miniaturized branch-line coupler with wideband harmonics suppression," Progress In Electromagnetics Research Letters, Vol. 17, 181-189, 2010.
doi:10.2528/PIERL10082602

4. Tseng, C. H. and C. L. Chang, "A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 7, 2085-2092, 2012.
doi:10.1109/TMTT.2012.2195019

5. Johan, J. and J. W. Odendaal, "Design of compact planar rat-race and branch-line hybrid couplers sing polar curves," Microw. Opt. Technol. Lett., Vol. 57, No. 11, 2637-2640, 2015.
doi:10.1002/mop.29397

6. Wang, Y., K. Ma, and S. Mou, "A compact branch-line coupler using substrate integrated suspended line technology," IEEE Microw. Wirel. Compon. Lett., Vol. 26, No. 2, 95-97, 2017.
doi:10.1109/LMWC.2016.2517158

7. Uchida, H., N. Yoneda, Y. Konishi, and S. Makino, "Bandpass directional couplers with electromagnetically-coupled resonators," 2006 IEEE MTT-S International Microwave Symposium Digest, 1563-1566, 2006.

8. Wong, Y. S., S. Y. Zheng, and W. S. Chan, "A wideband coupler with wide suppression band using coupled-stub," Proceedings of the Asia-Paci¯c Microwave Conference, 1058-1061, 2011.

9. Wang, C., Y. Li, and N. Y. Kim, "A compact 3-dB 90± directional coupler in integrated passive devices manufacturing process for LTE applications," 2014 3rd Asia-Paci¯c Conference, Antennas and Propagation (APCAP), 1291-1292, 2014.

10. Lin, T. W., C. H. Lin, K. C. Huang, and J. T. Kuo, "Compact branch-line coupler ¯lter with transmission zeros," 2015 Asia-Paci¯c Microwave Conference (APMC), 1-3, 2015.

11. Wang, K. X., X. Y. Zhang, S. Y. Zheng, and Q. Xue, "Compact ¯ltering rat-race hybrid with wide stopband," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 8, 2550-2560, 2015.
doi:10.1109/TMTT.2015.2444841

12. Pozar, D. M., Microwave Engineering, Vol. 3rd, John Wiley and Sons Inc., 2014.

13. Kim, J. and J.-G. Yook, "A miniaturized 3-dB 90± hybrid coupler using coupled-line section with spurious rejection," IEEE Microw. Wirel. Compon. Lett., Vol. 24, No. 11, 766-768, 2014.
doi:10.1109/LMWC.2014.2359157

14. Kumar, K. V. P. and S. S. Karthikeyan, "Miniaturized quadrature hybrid coupler using modi¯ed T-shaped transmission line for wide-range harmonic suppression," IET Microwaves, Antennas Propag., Vol. 10, No. 14, 1522-1527, 2016.
doi:10.1049/iet-map.2016.0301