1. Dilz, R. J. and M. C. van Beurden, "An efficient complex spectral path formulation for simulating the 2D TE scattering problem in a layered medium using Gabor frames," Journal of Computational Physics, Vol. 345, 528-542, 2017.
doi:10.1016/j.jcp.2017.05.034 Google Scholar
2. Dilz, R. J., M. G. G. M. van Kraaij, and M. C. van Beurden, "2D TM scattering problem for finite objects in a dielectric stratified medium employing Gabor frames in a domain integral equation," Journal of the Optical Society of America A, Vol. 34, No. 8, 1315-1321, 2017.
doi:10.1364/JOSAA.34.001315 Google Scholar
3. Dilz, R. J., A spatial spectral domain integral equation solver for electromagnetic scattering in dielectric layered media, Ph.D. thesis, Chapter 8, Eindhoven University of Technology, 2017.
4. Dilz, R. J. and M. C. van Beurden, "Fast operations for a Gabor-frame based integral equation with equidistant sampling," IEEE Antennas and Wireless Propagation Letters, Vol. 12, No. 1, 82-85, 2018.
doi:10.1109/LAWP.2017.2775702 Google Scholar
5. Zwamborn, P. and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 9, 1757-1766, Sep. 1992.
doi:10.1109/22.156602 Google Scholar
6. Diebold, A. C., Handbook of Silicon Semiconductor Metrology, CRC Press, 2001.
doi:10.1201/9780203904541
7. Dilz, R. J. and M. C. van Beurden, "The Gabor frame as a discretization for the 2D transverseelectric scattering-problem domain integral equation," Progress In Electromagnetics Research B, Vol. 69, 117-136, 2016.
doi:10.2528/PIERB16061406 Google Scholar
8. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
9. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press, 1973.
10. Kong, J. A., Theory of Electromagnetic Waves, John Wiley & Sons, Inc, 1975.
11. Wait, J. R., Electromagnetic Waves in Stratified Media, Pergamon Press, 1970.
12. Sommerfeld, A., "Uber der ausbreitung der wellen in der drahtlosen telegraphie," Annalen der Physik, Vol. 333, No. 4, 665-736, 1909.
doi:10.1002/andp.19093330402 Google Scholar
13. Hochman, A. and Y. Leviatan, "A numerical methodology for efficient evaluation of 2D Sommerfield integral in the dielectric half-space problem," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 413-431, Feb. 2010.
doi:10.1109/TAP.2009.2037761 Google Scholar
14. De Ruiter, H. M., "Limits on the propagation constants of planar optical waveguide modes," Applied Optics, Vol. 20, No. 5, 731-732, 1981.
doi:10.1364/AO.20.000731 Google Scholar
15. Newman, E. H. and D. Forrai, "Scattering from a microstrip patch," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 3, 245-251, Mar. 1987.
doi:10.1109/TAP.1987.1144084 Google Scholar
16. Larson, M. G. and F. Bengzon, The Finite Element Method: Theory, Implementation, and Applications, Springer, 2013.
doi:10.1007/978-3-642-33287-6
17. Burger, S., L. Zschiedrich, J. Pomplun, and F. Schmidt, "Finite-element based electromagnetic field simulations: Benchmark results for isolated structures," Proc. SPIE 8880 Photomask Technology, Vol. 8880, 2013. Google Scholar
18. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," Journal of the Optical Society of America, Vol. 73, No. 4, 811-818, 1981.
doi:10.1364/JOSA.71.000811 Google Scholar
19. Botten, I. C., M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, "The dielectric lamellar diffraction grating," Optica Acta, Vol. 28, No. 3, 413-428, 1981.
doi:10.1080/713820571 Google Scholar
20. Pisarenco, M., J. Maubach, I. Setija, and R. Mattheij, "Aperiodic Fourier modal method in contrast-field formulation for simulation of scattering from finite structures," Journal of the Optical Society of America A, Vol. 27, No. 11, 2423-2431, 2010.
doi:10.1364/JOSAA.27.002423 Google Scholar
21. Berezin, I. S. and N. P. Zhidkov, Computing Methods, Pergamon Press, 1965.
22. Dilz, R. J. and M. C. van Beurden, "Computational aspects of a spatial spectral domain integralequation for scattering by objects of large longitudinal extent," 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, Sep. 11–15, 2017. Google Scholar
23. Taillaert, D., F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, "Grating couplers for coupling between optical fibers and nanophotonic waveguides," Japanese Journal of Applied Physics, Vol. 45, No. 8a, 6071-6077, 2006.
doi:10.1143/JJAP.45.6071 Google Scholar
24. Lawrence, G. N., K. E. Moore, and P. J. Cronkite, "Rotationally symmetric construction optics for a waveguide focusing grating," Appl. Opt., Vol. 29, No. 15, 2315-2319, May 1990.
doi:10.1364/AO.29.002315 Google Scholar
25. Forouhar, S., R.-X. Lu, W. S. C. Chang, R. L. Davis, and S.-K. Yao, "Chirped grating lenses on nb2o5 transition waveguides," Appl. Opt., Vol. 22, No. 19, 3128-3132, Oct. 1983.
doi:10.1364/AO.22.003128 Google Scholar