Vol. 73
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-02-06
Wide Stopband Compact Microstrip Quadruplexer Using Common Crossed Resonator
By
Progress In Electromagnetics Research Letters, Vol. 73, 69-75, 2018
Abstract
A compact size and wide stopband microstrip quadruplexer with a common crossed resonator is proposed in this paper. The resonator mentioned is theoretically analyzed and proved to be able to resonance at three different frequencies, which can be easily modified by changing the length of the corresponding stub of the resonator. This tri-mode resonator is proved to have the capacity of being shared by three different bandpass filters in a quadruplexer in this paper. Then an additional channel is designed to be coupled to the other side of the feed line of the common input port. Compared to conventional ones, the proposed quadruplexer has a more compact structure, cause no extra matching network is needed, and the number of resonators is reduced effectively. Moreover, a wide stopband is obtained by making the resonators work at the same fundamental frequencies but different higher order frequencies. Besides, open circuit stubs are also used to suppress the harmonic frequencies. To demonstrate the design procedure, a quadruplexer with a third order Chebyshev response in each channel is fabricated and measured. The measured result is in good agreement with the simulated one, showing an attenuation of 20 dB up to 10.16 times of the first channel frequency.
Citation
Jian-Feng Qian, and Fu-Chang Chen, "Wide Stopband Compact Microstrip Quadruplexer Using Common Crossed Resonator," Progress In Electromagnetics Research Letters, Vol. 73, 69-75, 2018.
doi:10.2528/PIERL17112205
References

1. Deng, H.-W., Y.-J. Zhao, Y. Fu, J. Ding, and X.-J. Zhou, "Compact and high isolation microstrip diplexer for broadband and WLAN application," Progress In Electromagnetics Research, Vol. 133, 555-570, 2013.
doi:10.2528/PIER12092303

2. Shi, J., J.-X. Chen, and Z.-H. Bao, "Diplexers based on microstrip line resonators with loaded elements," Progress In Electromagnetics Research, Vol. 115, 423-439, 2011.
doi:10.2528/PIER11031516

3. Lin, S.-C. and C. Y. Yeh, "Design of microstrip triplexer with high isolation based on parallel coupled-line filters using T-shaped short-circuited resonators," IEEE Microw. Wireless Compon. Lett., Vol. 25, 648-650, 2015.
doi:10.1109/LMWC.2015.2463215

4. Deng, P.-H., B.-L. Huang, and B.-L. Chen, "Designs of microstrip four- and five-channel multiplexers using branch-line-shaped matching circuits," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 5, 1331-1338, 2015.
doi:10.1109/TCPMT.2015.2463739

5. Zeng, S.-J. and J.-Y. Wu, "Compact and high-isolation quadruplexer using distributed coupling tachnique," IEEE Microw. Wireless Compon. Lett., Vol. 21, 197-199, 2011.
doi:10.1109/LMWC.2011.2109702

6. Weng, S.-C., K. W. Hsu, and W.-H. Tu, "Microstrip bandpass single-pole quadruple-throw switch and independently switchable quadruplexer," IEEE Trans. Ante. Propag., Vol. 8, 244-254, 2014.

7. Wu, H.-W., S.-H. Huang, and Y.-F. Chen, "Compact microstrip triplexer based on coupled stepped impedance resonators," IEEE MTT-S Int. Microw. Symp. Dig., 1-3, 2013.

8. Hung, W.-C., K. W. Hsu, and W.-H. Tu, "Wide-stopband microstrip quadruplexer using asymmetric stepped-impedance resonators," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, 2013.

9. Chen, C.-F., T.-Y. Huang, C.-P. Chou, and R.-B. Wu, "Microstrip diplexers design with common resonator sections for compact size, but high isolation," IEEE Trans. Microw. Theory Tech., Vol. 54, 1945-1952, 2006.
doi:10.1109/TMTT.2006.873613

10. Tantiviwat, S., N. Intarawiset, and R. Jeenawong, "Wide-stopband, compact microstrip diplexer with common resonator using stepped-impedance resonators," IEEE Tencon. Spring Conf., 17-19, 2013.

11. Chuang, M.-L. and M. T. Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microw. Wireless Compon. Lett., Vol. 21, 583-585, 2011.
doi:10.1109/LMWC.2011.2168949

12. Chen, C.-F., T.-Y. Huang, T.-M. Shen, and R.-B. Wu, "A miniaturized microstrip common resonator triplexer without extra matching network," Asia Europe Microw. Conf., 1439-1442, 2006.

13. Chu, Q.-X., F.-C. Chen, and Z.-H. Tu, "A novel crossed resonator and its applications to bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 57, 1753-1759, 2009.
doi:10.1109/TMTT.2009.2022873

14. Chen, C.-F., T.-Y. Huang, C.-P. Chou, and R.-B. Wu, "Design of microstrip bandpass filters with multiorder spurious-mode suppression," IEEE Trans. Microw. Theory Tech., Vol. 53, 3788-3793, 2005.
doi:10.1109/TMTT.2005.859869

15. Chen, F.-C., R.-S. Li, and Q.-X. Chu, "Ultra-wide stopband low-pass filter using multiple transmission zeros," IEEE Access, Vol. 5, 6437-6443, 2017.

16. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619