Vol. 75
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-04-11
Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator
By
Progress In Electromagnetics Research Letters, Vol. 75, 39-45, 2018
Abstract
In this paper, a novel ultra-wideband (UWB) power divider with dual notched bands using square ring multiple-mode resonators (SRMMRs) is presented. The characteristics of the proposed SRMMRs are investigated by using even- and odd-mode analysis. Then, the initial UWB performance is achieved by introducing SRMMRs to the basic Wilkinson power divider. Finally, two desired notched bands inside the UWB passband are achieved by embedding a pair of coupled dual-mode stepped impedance resonators (DMSIRs) into the SRMMRs. The central frequencies of the notched bands can be easily controlled by the electrical length of the DMSIRs. To validate the design concept, a novel compact UWB power divider with dual notched bands centered at frequencies of 5.8 GHz and 8.0 GHz is designed and measured. The simulated and measured results indicate that it has a low insertion loss and good return loss performance at all the three ports, and a high isolation between the two output ports across the UWB bandwidth from 3.1 to 10.6 GHz with a small size of 0.46λg×0.69λg, where λg is the guided wavelength at 6.85 GHz.
Citation
Lihua Wu, Shanqing Wang, Luetao Li, and Chengpei Tang, "Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator," Progress In Electromagnetics Research Letters, Vol. 75, 39-45, 2018.
doi:10.2528/PIERL18010942
References

1. Zhao, J. D., J. P. Wang, and J. L. Lin, "Compact UWB bandpass filter with triple notched bands using parallel U-shaped defected microstrip structure," IET Electron. Lett., Vol. 50, No. 2, 89-91, 2014.
doi:10.1049/el.2013.3077

2. Wei, F., X. Wang, X. Zou, and X. Shi, "UWB filtering power divider with two narrow notch-bands and wide stop-band," Frequenz., Vol. 72, No. 1-2, 2017.
doi:10.1515/freq-2017-0031

3. Lee, S. W., C. S. Kim, K. S. Choi, J. S. Park, and D. Ahn, "A general design formula of multi-section power divider based on singly terminated filter design theory," IEEE MTTS-S Int. Microwave Symp. Dig., Vol. 2, 1297-1300, Phoenix, AZ, USA, 2001.

4. Xue, Q. and K. Song, "Ultra-wideband coaxial-waveguide power divider with flat group delay response," IET Electron. Lett., Vol. 46, No. 17, 1236-1237, 2010.
doi:10.1049/el.2010.1295

5. Wong, S. W. and L. Zhu, "Ultra-wideband power divider with good in-band splitting and isolation performances," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 8, 518-520, 2008.
doi:10.1109/LMWC.2008.2001009

6. Song, K.-J. and Q. Xue, "Novel ultra-wideband (UWB) multilayer slotline power divider with bandpass response," IEEE Microw. Wirel Compon. Lett., Vol. 20, No. 1, 13-15, 2010.
doi:10.1109/LMWC.2009.2035951

7. Wang, J., W. Hong, H. J. Tang, Y. Zhang, J.-X. Chen, and J.-Y. Zhou, "Ultra-wideband bandpass filter with multiple frequency notched bands based on SIW and SIR technology," Proceedings of the 36th European Microwave Conference, 268-271, 2009.

8. Abbosh, A. M., "Multilayer bandstop filter for ultra wideband systems," IET Microw. Antennas Propag., Vol. 3, No. 1, 130-136, 2009.
doi:10.1049/iet-map:20070294

9. Matthaei, G., L. Young, and E. Jones, Microwave Filters, Impedance-matching Network, and Coupling Structures, 219-220, Artech House, Norwood, MA, USA, 1980.

10. Pozar, D. M., Microwave Engineering, 3th Ed., 185-187, Wiley, 2005.