1. Stillinger, F. H., "Axiomatic basis for spaces with non-integer dimensions," Journal of Mathematical Physics, Vol. 18, 1224-1234, 1977.
doi:10.1063/1.523395 Google Scholar
2. Zubair, M., M. J. Mughal, and Q. A. Naqvi, Fractional Fields and Waves in Fractional Dimensional Space, Springer-Verlag, 2012.
doi:10.1007/978-3-642-25358-4
3. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solution in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010.
doi:10.2528/PIERL10102103 Google Scholar
4. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of cylindrical wave equation for electromagnetic field in fractional dimensional space," Progress In Electromagnetics Research, Vol. 114, 443-455, 2011.
doi:10.2528/PIER11021508 Google Scholar
5. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of spherical wave in D-dimensional fractional space," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1481-1491, 2011. Google Scholar
6. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "On electromagnetic wave propagation in fractional space," Nonlinear Analysis: Real World Applications, Vol. 12, 2844-2850, 2011.
doi:10.1016/j.nonrwa.2011.04.010 Google Scholar
7. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space," Progress In Electromagnetics Research, Vol. 114, 255-269, 2011.
doi:10.2528/PIER11011403 Google Scholar
8. Asad, H., M. Zubair, and M. J. Mughal, "Reflection and transmission at dielectric-fractal interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012.
doi:10.2528/PIER12012402 Google Scholar
9. Attiya, A. M., "Reflection and transmission of electromagnetic wave due to a quasi-fractional-space slab," Progress In Electromagnetics Research Letters, Vol. 24, 119-128, 2011.
doi:10.2528/PIERL11051105 Google Scholar
10. Baleanua, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058 Google Scholar
11. Naqvi, Q. A. and M. Zubair, "On cylindrical model of electrostatic potential in fractional dimensional space," Optik-International Journal for Light and Electron Optics, Vol. 127, 3243-3247, 2016.
doi:10.1016/j.ijleo.2015.12.019 Google Scholar
12. Noor, A., A. A. Syed, and Q. A. Naqvi, "Quasi-static analysis of scattering from a layered plasmonic sphere in fractional space," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 8, 1047-1059, 2015.
doi:10.1080/09205071.2015.1032436 Google Scholar
13. Asad, H., M. J. Mughal, M. Zubair, and Q. A. Naqvi, "Electromagnetic Green’s function for fractional space," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1903-1910, 2012.
doi:10.1080/09205071.2012.720748 Google Scholar
14. Abbas, M., A. A. Rizvi, and Q. A. Naqvi, "Two dimensional Green’s function for non-integer dimensional dielectric half space geometry," Optik-International Journal for Light and Electron Optics, Vol. 127, 8530-8535, 2016.
doi:10.1016/j.ijleo.2016.06.059 Google Scholar
15. Zubair, M. and L. K. Ang, "Fractional-dimensional Child-Langmuir law for a rough cathode," Physics of Plasmas (1994-present), Vol. 23, 072118, 2016.
doi:10.1063/1.4958944 Google Scholar
16. Hameed, A., M. Omar, A. A. Syed, and Q. A. Naqvi, "Power tunneling and rejection from fractal chiral-chiral interface," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 14, 1766-1776, 2014.
doi:10.1080/09205071.2014.938448 Google Scholar
17. Abbas, M., A. A. Rizvi, A. Fiaz, and Q. A. Naqvi, "Scattering of electromagnetic plane wave from a low contrast circular cylinder buried in non-integer dimensional half space," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 3, 263-283, 2017.
doi:10.1080/09205071.2016.1276859 Google Scholar
18. Sandev, T., I. Petreska, and E. K. Lenzi, "Harmonic and anharmonic quantum-mechanical oscillators in non-integer dimensions," Phys. Lett. A, Vol. 378, 109-116, 2014.
doi:10.1016/j.physleta.2013.10.048 Google Scholar
19. Palmer, C. and P. N. Stavrinou, "Equations of motion in a non-integer-dimensional space," Journal of Physics A: Mathematical and General, Vol. 37, 2004. Google Scholar
20. Muslih, S., D. Baleanu, and E. Rabei, "Gravitational potential in fractional space," Open Physics, Vol. 5, 285-292, 2007.
doi:10.2478/s11534-007-0014-9 Google Scholar
21. Tarasov, V. E., "Continuous medium model for fractal media," Phys. Lett. A, Vol. 336, 167-174, 2005.
doi:10.1016/j.physleta.2005.01.024 Google Scholar
22. Tarasov, V. E., "Anisotropic fractal media by vector calculus in non-integer dimensional space," Journal of Mathematical Physics, Vol. 55, 083510, 2014.
doi:10.1063/1.4892155 Google Scholar
23. Tarasov, V. E., "Elasticity of fractal materials using the continuum model with non-integer dimensional space," Comptes Rendus Mecanique, Vol. 343, 57-73, 2015.
doi:10.1016/j.crme.2014.09.006 Google Scholar
24. Tarasov, V. E., "Flow of fractal fluid in pipes: Non-integer dimensional space approach," Chaos, Solitons and Fractals, Vol. 67, 26-37, 2014.
doi:10.1016/j.chaos.2014.06.008 Google Scholar
25. Tarasov, V. E., "Vector calculus in non-integer dimensional space and its applications to fractal media," Communications in Nonlinear Science and Numerical Simulation, Vol. 20, 360-374, 2015.
doi:10.1016/j.cnsns.2014.05.025 Google Scholar
26. Tarasov, V. E., "Electromagnetic waves in non-integer dimensional spaces and fractals," Chaos, Solitons and Fractals, Vol. 81, 38-42, 2015.
doi:10.1016/j.chaos.2015.08.017 Google Scholar
27. Tarasov, V. E., "Fractal electrodynamics via non-integer dimensional space approach," Phys. Lett. A, Vol. 379, 2055-2061, 2015.
doi:10.1016/j.physleta.2015.06.032 Google Scholar
28. Tarasov, V. E., "Acoustic waves in fractal media: Non-integer dimensional spaces approach," Wave Motion, Vol. 63, 18-22, 2016.
doi:10.1016/j.wavemoti.2016.01.003 Google Scholar
29. Naqvi, Q. A. and A. A. Rizvi, "Scattering from a cylindrical object buried in a geometry with parallel interfaces," Progress In Electromagnetics Research, Vol. 27, 19-35, 2000.
doi:10.2528/PIER98120902 Google Scholar
30. Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineering, McGraw-Hill, 1999.
doi:10.1007/978-1-4757-3069-2